1. Trang chủ
  2. » Ngoại Ngữ

International Macroeconomics and Finance: Theory and Empirical Methods Phần 10 pptx

34 301 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề A Second Generation Model
Trường học University of Economics and Finance
Chuyên ngành International Macroeconomics and Finance
Thể loại Lecture notes
Năm xuất bản Unknown
Thành phố Vietnam
Định dạng
Số trang 34
Dung lượng 336,38 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

11.2 A Second Generation ModelIn Þrst-generation models, exogenous domestic credit expansion causesinternational reserves to decline in order to maintain a constant moneysupply that is c

Trang 1

11.2 A Second Generation Model

In Þrst-generation models, exogenous domestic credit expansion causesinternational reserves to decline in order to maintain a constant moneysupply that is consistent with the Þxed exchange rate A key feature

of second generation models is that they explicitly account for the icy options available to the authorities To defend the exchange rate,the government may have to borrow foreign exchange reserves, raise do-mestic interest rates, reduce the budget deÞcit and/or impose exchangecontrols Exchange rate defense is therefore costly The government’swillingness to bear these costs depend in part on the state of the econ-omy Whether the economy is in the good state or in the bad state

pol-in turn depends on the public’s expectations The government engages

in a cost-beneÞt calculation to decide whether to defend the exchangerate or to realign

We will study the canonical second generation model due to feld [112] In this model, the government’s decision rule is nonlinear andleads to multiple (two) equilibria One equilibrium has low probability

Obst-of devaluation whereas the other has a high probability The costs tothe authorities of maintaining the Þxed exchange rate depend on thepublic’s expectations of future policy An exogenous event that changesthe public’s expectations can therefore raise the government’s assess-ment of the cost of exchange rate maintenance leading to a switch fromthe low-probability of devaluation equilibrium to the high-probability

of devaluation equilibrium

What sorts of market-sentiment shifting events are we talking about?Obstfeld offers several examples that may have altered public expecta-tions prior to the 1992 EMS crisis: The rejection by the Danish public

of the Maastrict Treaty in June 1992, a sharp rise in Swedish ployment, and various public announcements by authorities that sug-gested a weakening resolve to defend the exchange rate In regard tothe Asian crisis, expectations may have shifted as information aboutover-expansion in Thai real-estate investment and poor investment al-location of Korean Chaebol came to light

Trang 2

unem-Obstfeld’s Multiple Devaluation Threshold Model

All variables are in logarithms Let pt be the domestic price level and

st be the nominal exchange rate Set the (log) of the exogenous foreignprice level to zero and assume PPP, pt = st Output is given by aquasi-labor demand schedule which varies inversely with the real wage

wt− st, and with a shock ut

iid

∼ N(0, σ2

u)

yt=−α(wt− st)− ut (11.23)Firms and workers agree to a rule whereby today’s wage was negotiatedand set one-period in advance so as to keep the ex ante real wageconstant

wt= Et−1(st) (11.24)Optimal Exchange Rate Management

We Þrst study the model where the government actively manages, butdoes not actually Þx the exchange rate The authorities are assumed

to have direct control over the current-period exchange rate

The policy maker seeks to minimize costs arising from two sources.The Þrst cost is incurred when an output target is missed Notice that(11.23) says that the natural output level is Et−1(yt) = 0 We assumethat there exists an entrenched but unspeciÞed labor market distortionthat prevents the natural level of output from reaching the sociallyefficient level These distortions create an incentive for the government

to try to raise output towards the efficient level The government sets

a target level of output ¯y > 0 When it misses the output target, itbears a cost of (¯y− yt)2/2 > 0

The second cost is incurred when there is inßation Under PPPwith the foreign price level Þxed, the domestic inßation rate is thedepreciation rate of the home currency, δt≡ st− st−1 Together, policyerrors generate current costs for the policy maker `t, according to thequadratic loss function

by electing officials to fulÞll its wishes

Trang 3

The static problem is the only feasible problem In an ideal world,

the government would like to choose current and future values of the

exchange rate to minimize the expected present value of future costs ⇐(225)

where β < 1 is a discount factor The problem is that this opportunity

is not available to the government because there is no way that the

authorities can credibly commit themselves to pre-announced future

actions Future values of st are therefore not part of the government’s

current choice set The problem that is within the government’s ability

to solve is to choose st each period to minimize (11.25), subject to

(11.24) and (11.23) This boils down to a sequence of static problems

so we omit the time subscript from this point on

Let s0 be yesterday’s exchange rate and E0(s) be the public’s

expec-tation of today’s exchange rate formed yesterday The government Þrst

observes today’s wage w = E0(s), and today’s shock u, then chooses

today’s exchange rate s to minimize ` in (11.25) The optimal

exchange-rate management rule is obtained by substituting y from (11.23) into

(11.25), differentiating with respect to s and setting the result to zero

Upon rearrangement, you get the government’s reaction function

s = s0+α

θ [α(w− s) + ¯y + u] (11.26)Notice that the government’s choice of s depends on yesterday’s pre-

diction of s by the public since w = E0(s) Since the public knows that

the government follows (11.26), they also know that their forecasts of

the future exchange rate partly determine the future exchange rate To

solve for the equilibrium wage rate, w = E0(s), take expectations of

Trang 4

Now, you can get the rational expectations equilibrium depreciation

δ = α¯y

θ +

λu

The equilibrium depreciation rate exhibits a systematic bias as a result

of the output distortion ¯y.3 The government has an incentive to set

y = ¯y Seeing that today’s nominal wage is predetermined, it attempts

to exploit this temporary rigidity to move output closer to its target

value The problem is that the public knows that the government will

do this and they take this behavior into account in setting the wage

The result is that the government’s behavior causes the public to set a

wage that is higher than it would set otherwise

Fixed Exchange Rates

The foregoing is an analysis of a managed ßoat Now, we introduce

a reason for the government to Þx the exchange rate Assume that in

addition to the costs associated with policy errors given in (11.25), the

government pays a penalty for adjusting the exchange rate Where does

this cost come from? Perhaps there are distributional effects associated

with exchange rate changes where the losers seek retribution on the

policy maker The groups harmed in a revaluation may differ from

those harmed in a devaluation so we want to allow for differential costs

associated with devaluation and revaluation.4 So let cd be the cost

associated with a devaluation and cr be the cost associated with a

revaluation The modiÞed current-period loss function is

otherwise We also assume that the central bank either has sufficient

3 This is the inßationary bias that arises in Barro and Gordon’s [7] model of

monetary policy

4 Devaluation is an increase in s which results in a lower foreign exchange value

of the domestic currency Revaluation is a decrease in s, which raises the foreign

exchange value of the domestic currency.

Trang 5

reserves to mount a successful defense or has access to sufficient lines

of credit for that purpose

The government now faces a binary choice problem After observingthe output shock u and the wage w it can either maintain the Þx orrealign To decide the appropriate course of action, compute the costsassociated with each choice and take the low-cost route

Maintenance costs Suppose the exchange rate is Þxed at s0 Theexpected rate of depreciation is δe = E0(s)− s0 If the governmentmaintains the Þx, adjustment costs are cd = cr = 0, and the depreci-ation rate is δ = 0 Substituting real wage w− s0 = δe and output

δe= w− s0 and collecting terms gives

δ = λ

α[αδ

e+ ¯y + u] (11.32)Equating (11.31) and (11.32) you get the real wage

Trang 6

Realignment rule A realignment will be triggered if `R < `M Thecentral bank devalues if u > 0 and 2cd > λ[αδe+ ¯y + u]2 It will andrevalue if u < 0 and 2cr > λ[αδe+ ¯y + u]2 The rule can be writtenmore compactly as

λ[αδe+ ¯y + u]2 > 2ck, (11.36)where k = d if u > 0 and k = r if u < 0 The realignment rule is some-times called an escape-clause arrangement There are certain extremeconditions under which everyone agrees that the authorities should es-cape the Þxed exchange-rate arrangement The realignment costs cd, cr

are imposed to ensure that during normal times the authorities havethe proper incentive to maintain the exchange rate and therefore pricestability

Central bank decision making given δe Let’s characterize the ment rule for a given value of the public’s devaluation expectations

realign-δe By (11.36), large positive realizations of u are big negative hits tooutput and trigger a devaluation Large negative values of u are bigpositive output shocks and trigger a revaluation

(11.36) is a piece-wise quadratic equation For positive realizations

of u, you want to Þnd the critical value ¯u such that u > ¯u triggers adevaluation Write (11.36) as an equality, set ck = cd, and solve forthe roots of the equation You are looking for the positive devaluationtrigger point so ignore the negative root because it is irrelevant Thepositive root is

The points [u, ¯u] are those that trigger the escape option Realizations

of u in the band [u, ¯u] result in maintenance of the Þxed exchange rate.Figure 11.2 shows the attack points for δe = 0.03 with ¯y = 0.01, α = 1,

θ = 0.15, cr = cd= 0.0004

Trang 7

-0.002 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

-0.15 -0.13 -0.11 -0.09 -0.07 -0.05 -0.03 -0.01 0.01 0.03

u

u

Figure 11.2: Realignment thresholds for given δe

Multiple trigger points for devaluation

u and ¯u depend on δe But the public also forms its expectationsconditional on the devaluation trigger points This means that u, ¯uand δe must be solved simultaneously

To simplify matters, we restrict attention to the case where the ernment may either defend the Þx or devalue the currency Revaluation

gov-is not an option We therefore focus on the devaluation threshold ¯u

We will set cr to be a very large number to rule out the possibility of arevaluation The central bank’s devaluation rule is

δ =

(

δ0 = 0 if u < ¯u

δ1 = αλ[αδe+ ¯y + u] if u > ¯u . (11.39)Let P[X = x] be the probability of the event X = x The expecteddepreciation is

δe = E0(δ)

Trang 8

= P[δ = δ0]δ0+ P[δ = δ1]E[(λ/α)(αδe+ ¯y + E(u|u > ¯u))]

= P[u > ¯u](λ/α)[αδe+ ¯y + E(u|u > ¯u)]

Solving for δe as a function of ¯u yields

f (u) = 1/(2a) for −a < u < a and the conditional density given u > ¯u

is, g(u|u > ¯u) = 1/(a − ¯u) It follows that

where fδ(¯u) is deÞned in (11.43) (11.44) has two solutions for ¯u, each

of which trigger a devaluation For parameter values a = 0.03, θ = 0.15,

c = 0.0004, α = 1, ¯y = 0.01 solving (11.44) yields the two solutions

¯

u1 =−0.0209 and ¯u2 = 0.0030 (11.44) is displayed in Figure 11.3 forthese parameter values

(229)⇒

Using (11.43), the public’s expected depreciation associated with ¯u1

is 2.7 percent whereas δe associated with ¯u2 is 45 percent The high

Trang 9

-0.005 0 0.005 0.01 0.015 0.02

Figure 11.3: Multiple equilibria devaluation thresholds

expected inßation (high δe) gets set into wages and the resulting wageinßation increases the pain from unemployment and makes devaluationmore likely Devaluation is therefore more likely under the equilibriumthreshold ¯u2 than ¯u1 When perceptions switch the economy to ¯u2, theauthorities require a very favorable output shock in order to maintainthe exchange rate

There is not enough information in the model for us to say which

of the equilibrium thresholds the economy settles on The model onlysuggests that random events can shift us from one equilibrium to an-other, moving from one where devaluation is viewed as unlikely to one

in which it is more certain Then, a relatively small output shock cansuddenly trigger a speculative attack and subsequent devaluation

Trang 10

Balance of Payments Crises Summary

1 A Þxed exchange rate regime will eventually collapse The result

is typically a balance of payments or currency crisis ized by substantial Þnancial market volatility and large losses offoreign exchange reserves by the central bank

character-2 Prior to the 1990s, crises were seen mainly to be the result ofbad macroeconomic management–policies choices that were in-consistent with the long-run maintenance of the exchange rate.First-generation models focused on predicting when a crisismight occur These models suggest that macroeconomic fun-damentals such as the budget deÞcit, the current account deÞcitand external debt relative to the stock of international reservesshould have predictive content for future crises

3 Second-generation models are models of self-fulÞlling criseswhich endogenize government policy making and emphasize theinteraction between the authorities’s decisions and the public’sexpectations Sudden shifts in market sentiment can weaken thegovernment’s willingness to maintain the exchange rate whichthereby triggers a crisis

Trang 11

Autocorrela-3 Arrow, Kenneth J 1964 “The Role of Securities in the OptimalAllocation of Risk-Bearing.” Review of Economic Studies 31: pp.91—96.

4 Backus, David, Alan Gregory, and Chris I Telmer 1993 counting for Forward Rates in Markets for Foreign Currency.”Journal of Finance 48: pp 1887-1908

“Ac-5 Backus, David, Patrick J Kehoe, and Finn E Kydland 1992

“International Real Business Cycles.” Journal of Political omy 100: pp 745—775

Econ-6 Balassa, Bela 1964 “The Purchasing Power Parity Doctrine: AReappraisal.” Journal of Political Economy 72: pp 584—596

7 Barro, Robert J and David B Gordon 1983 “A Positive Theory

of Monetary Policy in a Natural Rate Model.” Journal of PoliticalEconomy 91: pp.589—610

8 Bertola, Guiseppe and Ricardo J Caballero 1992 “Target Zonesand Realignments.’ American Economic Review 82: pp 520—36

9 Bekaert, Geert 1996 “The Time Variation of Risk and Return inForeign Exchange Markets: A General Equilibrium Perspective.”Review of Financial Studies 9: pp 427—70

10 Betts, Caroline and Michael B Devereux 1998 “Exchange RateDynamics in a Model of Pricing-To-Market.” Journal of Interna-tional Economics forthcoming

11 Beveridge, Steven and Charles R Nelson 1981 “A New proach to Decomposition of Economic Time Series into Perma-nent and Transitory Components with Particular Attention toMeasurement of the ‘Business Cycle.”’ Journal of Monetary Eco-nomics 7: pp.151-74

Trang 12

Ap-12 Bhargava, Alok 1986 “On the Theory of Testing for Unit Roots

in Observed Time Series.” Review of Economic Studies 53: pp.369—84

13 Bilson, John F O 1978 “Rational Expectations and the change Rate.” In Jacob A Frenkel and Harry G Johnson, eds.The Economics of Exchange Rates: Selected Studies Reading,MA: Addison—Wesley, pp.75—96

Ex-14 Black, Fisher 1986 “Noise.” Journal of Finance 41: pp 529—543

15 Blanchard, Oliver and Danny Quah 1989 “The Dynamic fects of Aggregate Demand and Supply Disturbances.” AmericanEconomic Review 79: pp 655-73

Ef-16 Blough, Stephen R 1992 “The Relationship between Power andLevel for Generic Unit Root Tests in Finite Samples.” Journal ofApplied Econometrics 7: pp 295-308

17 Bowman, David 1998 “Efficient Tests for Autoregressive UnitRoots in Panel Data.” Unpublished manuscript Board of Gov-ernors of the Federal Reserve System

18 Burnside, Craig 1994 “Hansen-Jagannathan Bounds as sical Tests of Asset-Pricing Models.” Journal of Business andEconomic Statistics 12: pp 57-79

Clas-19 Campbell, John and Pierre Perron 1991 “Pitfalls and portunities: What Macroeconomists Should Know about UnitRoots.” in Olivier Jean Blanchard and Stanley Fischer, eds.NBER Macroeconomics Annual 1991 Cambridge and London:MIT Press, pp 141-201

Op-20 Campbell, John and Robert Shiller 1987 “Cointegration andTests of Present Value Models.” Journal of Political Economy95: pp 1062-88

21 Canzoneri, Matthew B., Robert E Cumby and Behzad Diba

1999 “Relative Labor Productivity and the Real Exchange Rate

in the Long Run: Evidence for a Panel of OECD Countries”Journal of International Economics 47: pp 245-66

22 Cassel, Gustuv 1921 The World’s Monetary Problems London:Constable

Trang 13

23 Cavaglia, S., Verschoor, W and Wolff, C 1994 “On the ness of Forward Foreign Exchange Rates: Irrationality or RiskPremia?” Journal of Business 67: pp.321—343.

Biased-24 Cecchetti, Stephen G., Pok-sang Lam and Nelson C Mark 1993

“The Equity Premium and the Risk Free Rate: Matching theMoments” Journal of Monetary Economics 31: pp 21-46

25 Cecchetti, Stephen G., Pok-sang Lam, and Nelson C Mark 1994

“Testing Volatility Restrictions on Intertemporal Marginal Rates

of Substitution Implied by Euler Equations and Asset Returns.”Journal of Finance 49: pp 123—152

26 Choi, Chi-Young 2000 Panel Unit-Root Tests under the Null pothesis of Stationarity and ConÞrmatory Analysis UnpublishedPh.D Dissertation The Ohio State University

Hy-27 Christiano, Lawrence J and Martin Eichenbaum 1990 “UnitRoots in Real GNP: Do We Know, and Do We Care?” CarnegieRochester Conference Series on Public Policy 32: pp 7-61

28 Clarida, Richard and Jordi Gali 1994 “Sources of Real Rate Fluctuations: How Important are Nominal Shocks?” Carnegie-Rochester Conference Series on Public Policy 41: pp 1—56

Exchange-29 Cochrane, John H 1988 “How Big Is the Random Walk inGNP?” Journal of Political Economy 96: pp 893-920

30 Cochrane, John H 1991 “A Critique of the Application of UnitRoot Tests.” Journal of Economic Dynamics and Control 15: pp.275-84

31 Cole, Harold L and Maurice Obstfeld 1991 “Commodity Tradeand International Risk Sharing: How Much Do Financial MarketsMatter?” Journal of Monetary Economics 28: pp 3-24

32 Cooley, Thomas and Steve LeRoy 1985 “Atheoretical conometrics: A Critique.” Journal of Monetary Economics 16:

Macroe-pp 283-308

33 Cooley, Thomas F and Edward C Prescott 1995 “EconomicGrowth and Business Cycles.” In Thomas F Cooley, ed Fron-tiers of Business Cycle Research Princeton: Princeton Univer-sity Press, pp.1—38

Trang 14

34 Debreu, Gerard 1959 Theory of Value New Haven, CT: YaleUniversity Press.

35 Davidson, Russel and James G MacKinnon 1993 Estimationand Inference in Econometrics New York: Oxford UniversityPress

36 De Jong, Frank 1994 “A Univariate Analysis of EMS ExchangeRates using a Target Zone Model.” Journal of Applied Econo-metrics 9: pp 31—45

37 Degroot, Morris H 1975 Probability and Statistics Reading MA:Addison—Wesley

38 De Long, J Bradford, Andrei Shleifer, Lawrence H Summersand Robert J Waldman 1990 “Noise trader risk in Þnancialmarkets.” Journal of Political Economy 98: pp 703—738

39 Dornbusch, Rudiger 1976 “Expectations and Exchange RateDynamics.” Journal of Political Economy 84: pp 1161—1176

40 Duffie, Darrell and Kenneth J Singleton 1993 “Simulated ments Estimation of Markov Models of Asset Prices.” Economet-rica 61: pp 929-52

Mo-41 Eichenbaum, Martin and Charles Evans 1995 “Some ical Evidence on the Effects of Shocks to Monetary Policy onExchange Rates” Quarterly Journal of Economics 110: pp 975-1009

Empir-42 Engle, Robert F and C.W.J Granger 1987 “Co-integrationand Error Correction: Representation, Estimation, and Testing.”Econometrica 55: pp 251-76

43 Engel, Charles 1984 “Testing for the Absense of Expected RealProÞts from Forward Market Speculation.” Journal of Interna-tional Economics 17: pp 299—308

44 Engel, Charles 1992 “On the Foreign Exchange Risk Premium

in a General Equilibrium Model.” Journal of International nomics 32: pp.305-19

Eco-45 Engel, Charles 2000 “PPP May Not Hold Afterall.” Journal ofInternational Economics forthcoming

46 Engel, Charles and John H Rogers 1996 “How Wide is theBorder?” American Economic Review 86: pp 1112—1125

Trang 15

47 Evans, Martin D.D 1996 “Peso Problems: Their Theoreticaland Empirical Implications.” In G.S Maddala and C.R Rao, eds.Statistical Methods of Finance, Handbook of Statistics Series, vol.

14 Amsterdam: Elsevier, North Holland, pp 613—46

48 Fama, Eugene F 1984 “Spot and Forward Exchange Rates.”Journal of Monetary Economics 14: pp.319-338

49 Fama, Eugene F 1991 “Efficient Capital Markets: II.” Journal

of Finance 46: pp 1575—617

50 Faust, Jon 1996 “Near Observational Equivalence and ical Size Problems with Unit Root Tests.” Econometric Theory12: pp 724—31

Theoret-51 Federal Reserve Bank of New York 1998 “Foreign Exchange andInterest Rate Derivatives Market Survey Turnover in the UnitedStates.” Unpublished manuscript

52 Feenstra, Robert C., Joseph E Gagnon, and Michael M Knetter

1996 “Market Share and Exchange Rate Pass-Through in WorldAutomobile Trade.” Journal of International Economics 40: pp.189—207

53 Fisher, R.A 1932 Statistical Methods for Research Workers, 4th

Ed Edinburgh: Oliver and Boyd

54 Fleming, Marcus J 1962 “Domestic Financial Policies underFixed and under Floating Exchange Rates.” International Mon-etary Fund Staff Papers 9: pp 369—379

55 Flood, Robert P and Peter M Garber 1984 “Collapsing Rate Regimes: Some Linear Examples.” Journal of InternationalEconomics 17: pp 1-13

Exchange-56 Flood, Robert P and Peter M Garber 1991 “The Linkagebetween Speculative Attack and Target Zone Models of ExchangeRates.” Quarterly Journal of Economics 106: pp 1367-72

57 Flood, Robert P and Nancy Marion 1999 “Perspectives onthe Recent Currency Crisis Literature.,” International Journal ofFinance and Economics 4: pp 1—26

58 Frankel, Jeffrey A and Menzie Chinn 1993 “Exchange RateExpectations and the Risk Premium: Tests for a Cross Section

Trang 16

of 17 Currencies.” Review of International Economics 1: 144.

pp.136-59 Frankel, Jeffrey, and Andrew K Rose 1996 “A Panel Project

on Purchasing Power Parity: Mean Reversion within and betweenCountries.” Journal of International Economics 40: pp 209-224

60 Frenkel, Jacob A 1978 “Purchasing Power Parity: DoctrinalPerspective and Evidence from the 1920s.” Journal of Interna-tional Economics 8: pp 169-191

61 Frenkel, Jacob A 1976 “A Monetary Approach to the ExchangeRate: Doctrinal Aspects and Empirical Evidence.” ScandinavianJournal of Economics 78: pp 200-24

62 Frenkel, Jacob A and Harry G Johnson, eds 1976 The tary Approach to the Balance of Payments Toronto: University

Mone-of Toronto Press

63 Frenkel, Jacob A and Richard M Levich 1977 “TransactionCosts and Interest Arbitrage: Tranquil versus Turbulent Peri-ods.” Journal of Political Economy 85: pp.1209—26

64 Friedman, Milton 1953 “Methodology of Positive Economics.”

In Essays in Positive Economics Chicago: University of ChicagoPress

65 Froot, Kenneth and Jeffrey A Frankel 1989 “Forward DiscountBias: Is it an Exchange Risk Premium?” Quarterly Journal ofEconomics 104: pp.139—161

66 Hamilton, James D 1994 Time Series Analysis Princeton:Princeton University Press

67 Gregory, Alan W and Gregor W Smith 1991 “Calibration asTesting: Inference in Simulated Macroeconomic Models.” Jour-nal of Business and Economic Statistics 9: pp.297—303

68 Grilli, Vittorio and Graciela Kaminsky 1991 “Nominal change Rate Regimes and the Real Exchange Rate.” Journal ofMonetary Economics 27: pp 191—212

Ex-69 Hall, Alastair R 1994 “Testing for a Unit Root in Time Serieswith Pretest Data-Based Model Selection.” Journal of Businessand Economic Statistics 12: pp 461—70

Trang 17

70 Hansen, Lars P 1982 “Large Sample Properties of GeneralizedMethod of Moment Estimators.” Econometrica 50: pp 1029-54.

71 Hansen, Lars P and Robert J Hodrick 1980 “Forward Rates asUnbiased Predictors of Future Spot Rates.” Journal of PoliticalEconomy 88: pp 829-53

72 Hansen, Lars P and Ravi Jagannathan 1991 “Implications ofSecurity Market Data for Models of Dynamic Economies.” Jour-nal of Political Economy 99: pp 225-62

73 Hansen, Lars P and Kenneth J Singleton 1982 ‘GeneralizedInstrumental Variables Estimation of Nonlinear Rational Expec-tations Models.” Econometrica 50: pp 1269-1286

74 Hatanaka, Michio 1996 Time-Series-Based Econometrics: UnitRoots and Cointegration New York: Oxford University Press

75 Hodrick, Robert J 1987 The Empirical Evidence on the ciency of Forward and Futures Foreign Exchange Markets Chur,Switzerland: Harwood Academic Publishers

Effi-76 Hodrick, Robert J and Edward C Prescott 1997 “Postwar U.S.Business Cycles: An Empirical Investigation ,”Journal of Money,Credit, and Banking 29: pp 1—16

77 Huizinga, John 1982 “An Empirical Investigation of the Run Behavior of Real Exchange Rates.” Carnegie—Rochester Con-ference Series on Public Policy 27: pp 149—214

Long-78 Im, Kyung So, M Hashem Pesaran and Yongcheol Shin 1997

“Testing for Unit Roots in Heterogeneous Panels” Unpublishedmanuscript Trinity College, University of Cambridge

79 Isard, Peter 1977 “How Far Can We Push the ‘Law of OnePrice’ ? American Economic Review 67: pp 942-48

80 Johansen, Soren 1991 “Estimation and Hypothesis Testing ofCointegration Vectors in Gaussian Vector Autoregressive Mod-els.”Econometrica 59: pp 1551-80

81 Johansen, Soren 1995 Likelihood-Based Inference in grated Vector Autoregressive Models New York: Oxford Univer-sity Press

Cointe-82 Kaminsky, Graciella, and Rodrigo Peruga 1990 “Can a Varying Risk Premium Explain Excess Returns in the Forward

Ngày đăng: 05/08/2014, 13:20

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm