1. Trang chủ
  2. » Cao đẳng - Đại học

Đại số cơ bản (ôn thi thạc sĩ toán học) Giải bài tập về ánh xạ tuyến tính

10 4,9K 44
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 2,51 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Đại số cơ bản (ôn thi thạc sĩ toán học) Giải bài tập về ánh xạ tuyến tính 1. a. Cho ánh xạ f : Rn→ R, chứng minh rằng f là ánh xạ tuyến tính khi và chỉ khi tồn tại các số a1, a2, . . . , an ∈ R để f (x1, x2, . . . , xn) = a1x1 + a2x2 + . . . + anxnb. Cho ánh xạ f : Rn→ Rm. Chứng minh rằng f là ánh xạ tuyến tính khi và chỉ khi tồn tại các số aij ∈ R đểf (x1, x2, . . . , xn) = (a11x1 + a12x2 + . . . + a1nxn, . . . , am1x1 + am2x2 + . . . + amnxn)(∗) Giải. Ta chỉ giải câu b., câu a. là trường hợp đặc biệt của câu b. khi m = 1. Kiểm tra trực tiếp, ta thấy ngay rằng nếu f có dạng như (∗) thì f là ánh xạ tuyến tính. Ngược lại, nếu f là ánh xạ tuyến tính, ta đặt: f (ei) = (a1i, a2i, . . . , ami)với i = 1, 2, . . . , n, trong đó ei= (0, . . . , 0, 1, 0, . . . , 0). Khi đó ta có f (x1, x2, . . . , xn) = f (x1e1 + x2e2 + . . . + xnen)= x1f (e1) + x2f (e2) + . . . + xnf (en)= f (a11x1 + a12x2 + . . . + a1nxn, . . . , am1x1 + am2x2 + . . . + amnxn)

Ngày đăng: 28/07/2014, 22:24

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w