Trong các cảm biến đo lực thường có một vật trung gian chịu tác động của lực cần đo và biến dạng.. Biến dạng và lực gây ra biến dạng có thể đo trực tiếp bằng cảm biến biến dạng, hoặc đo
Trang 1Chương VI Cảm biến đo lực 6.1 Nguyên lý đo lực
Xác định ứng lực cơ học tác động lên các cấu trúc trong những điều kiện xác
định là vấn đề hàng đầu trong việc đánh giá độ an toàn cho hoạt động của máy móc, thiết bị
Theo định luật cơ bản của động lực học, lực được xác định bởi biểu thức:
a M
Trong đó:
F - lực tác dụng (N)
M - khối lượng của vật (kg)
a - gia tốc của vật (m/s2)
Theo công thức (6.1), khi một lực có cường độ F (N) tác động vào một vật có khối lượng M (kg) sẽ gây ra gia tốc a (m/s2)
Nguyên tắc đo lực là làm cân bằng lực cần đo với một lực đối kháng sao cho lực tổng cộng và momen tổng của chúng bằng không
Trong các cảm biến đo lực thường có một vật trung gian chịu tác động của lực cần đo và biến dạng Biến dạng của vật trung gian là nguyên nhân gây ra lực đối kháng và trong giới hạn đàn hồi biến dạng tỉ lệ với lực đối kháng
Biến dạng và lực gây ra biến dạng có thể đo trực tiếp bằng cảm biến biến dạng, hoặc đo gián tiếp nếu một trong những tính chất điện của vật liệu chế tạo vật trung gian phụ thuộc vào biến dạng
Ta cũng có thể xác định một lực bằng cách cân bằng nó với một lực đã biết Theo công thức xác định trọng lực của một vật trong trọng trường trái đất:
g M
P = Trong môi trường có g biết trước, cân khối lượng M của vật ta có thể xác định
được trọng lực của vật đó, ngược lại nếu sử dụng một vật có khối lượng đã biết sẽ có
được một lực xác định Đây chính là nguyên tắc chuẩn cảm biến bằng máy đo có khối lượng treo
Trong chương này nghiên cứu các bộ cảm biến đo lực phổ biến như cảm biến
áp điện, cảm biến từ giảo, cảm biến dựa trên phép đo dịch chuyển, cảm biến xúc giác
Trang 26.2 Cảm biến áp điện
6.2.1 Cấu tạo và nguyên lý hoạt động
Cảm biến áp điện hoạt động dựa trên nguyên lý của hiệu ứng áp điện
Phần tử cơ bản của một cảm biến áp điện có cấu tạo tương tự một tụ điện được chế tạo bằng cách phủ hai bản cực lên hai mặt đối diện của một phiến vật liệu áp
điện mỏng Vật liệu áp điện thường dùng là thạch anh vì nó có tính ổn định và độ cứng cao Tuy nhiên hiện nay vật liệu gốm (ví dụ gốm PZT) do có ưu điểm độ bền
và độ nhạy cao, điện dung lớn, ít chịu ảnh hưởng của điện trường ký sinh, dễ sản xuất và giá thành chế tạo thấp cũng được sử dụng đáng kể
Đặc trưng vật lý của một số vật liệu áp điện được trình bày trên bảng 6.1
Vật liệu
Độ thẩm thấu
Điện trở suất (Ω.m)
Modun Young (109 N.m-2)
ứng lực cực đại (107 N.m-2)
Nhiệt độ làm việc
Tmax (oC)
Muối
seignette
ε11=350 >1010 Y11=19,3
Y22=30
1,4 45
Dưới tác dụng của lực cơ học, tấm áp điện bị biến dạng, làm xuất hiện trên hai bản cực các điện tích trái dấu Hiệu điện thế xuất hiện giữa hai bản cực tỉ lệ với lực tác dụng
Các biến dạng cơ bản xác định chế độ làm việc của bản áp điện Trên hình 6.1 biểu diễn các biến dạng cơ bản của bản áp điện
Hình 6.1 Các dạng biến dạng cơ bản a) Theo chiều dọc b) Theo chiều ngang c) Cắt theo bề dày d) Cắt theo bề mặt
+
+
ư
ư +
c)
d)
Trang 3Trong nhiều trường hợp các bản áp điện được ghép thành bộ theo cách ghép nối tiếp hoặc song song
Trường hợp ghép song song hai bản áp điện (hình 6.2a), điện dung của cảm biến tăng gấp đôi so với trường hợp một bản áp điện Khi ghép nối tiếp (hình 6.2b)
điện áp hở mạch và trở kháng trong tăng gấp đôi nhưng điện dung giảm xuống còn một nửa Những nguyên tắc trên áp dụng cho cả trường hợp ghép nhiều bản áp điện
với nhau như biểu diễn trên hình 6.2c
6.2.2 Cảm biến thạch anh kiểu vòng đệm
Các cảm biến thạch anh kiểu vòng đệm có cấu tạo như hình 6.3, chúng gồm các phiến cắt hình vòng đệm ghép với nhau và chỉ nhạy với lực nén tác dụng dọc theo trục
Giới hạn trên của dải đo phụ thuộc vào diện tích bề mặt của các vòng đệm, cỡ
từ vài kN (với đường kính ~ 1 cm) đến 103 kN ( với đường kính ~ 10 cm)
Người ta cũng có thể dùng cảm biến loại này để đo lực kéo bằng cách tạo lực nén đặt trước (dùng các bulông xiết chặt các vòng đệm), khi đó lực kéo được đo như
sự sụt giảm của lực nén Tuy nhiên, khi đó độ nhạy giảm 5 - 10%
+
ư + ư
+
ư +
ư
+
ư + ư +
ư +
ư +
ư + ư +
ư +
ư
+
Hình 6.2 Cách ghép các phần tử áp điện a) Hai phần tử song song b) Hai phần tử nối tiếp c) Nhiều phần tử song song
Hình 6.3 Cấu tạo của cảm biến vòng đệm thạch anh 1) Các vòng đệm 2) Các tấm đế 3) Đầu nối dây
1
a)
Trang 46.2.3 Cảm biến thạch anh nhiều thành phần
Trong cảm biến loại này, các vòng đệm thạch anh được cắt theo các hướng khác nhau, khi đó chúng chỉ nhạy với một hướng xác định của lực
Thạch anh có năm hệ số điện áp d11, d12, d14, d25, d26, do đó một vòng đệm cắt theo phương của trục X chỉ nhạy với lực nén (vì có d11), các lực ký sinh tác động theo cạnh bên đều không gây nên hiệu ứng với vòng đệm và các ứng lực mà hiệu ứng của chúng liên quan đến d12, d14 sẽ không có mặt Tương tự như vậy, một vòng
đệm cắt theo phương Y chỉ nhạy với lực cắt theo bề dày (vì có d26) và bằng cách lắp ghép hợp lý có thể loại trừ hiệu ứng của các ứng lực liên quan đến d25 (cắt theo mặt) Hai mặt cắt đặc biệt này biểu diễn trên hình 6.4b, chúng được sử dụng để chế tạo các cảm biến thạch anh nhiều thành phần
Trên hình 6.4c biểu diễn một cảm biến ba thành phần vuông góc gồm ba cặp vòng tròn ghép với nhau, một cặp nhạy với lực nén Fx, hai mặt còn lại nhạy với lực cắt Fy và Fz vuông góc với Fx
6.2.4 Sơ đồ mạch đo
a) Sơ đồ tương đương của cảm biến
b)
dQ
dQ
dt
ρ
λ
γ
R g C g
Hình 6.5 Sơ đồ tương đương của cảm biến áp điện a) Trong dải thông rộng b) Trong dải thông có ích c) Nối với mạch ngoài
dQ
1 g
1 R
1 R
1 = +
1 g
x
y
z
Hình 6.4 Cảm biến thạch anh nhiều thành phần a) Ký hiệu các trục b) Các phiến cắt đặc biệt c) Cảm biến ba thành phần vuông góc
Trang 5Trong dải thông rộng, cảm biến tương đương với một nguồn dòng mắc song song với trở kháng trong (gồm ba nhánh) của cảm biến (hình6.5a) Nhánh ρ, λ, γ
đặc trưng cho cộng hưởng điện cơ thứ nhất ở tần số cao nằm ngoài dải thông của cảm biến Điện trở trong Rg là điện trở cách điện của vật liệu áp điện, khi ở tần số thấp nó trở thành trở kháng trong của cảm biến Tụ điện Cg là điện dung của nguồn phát điện tích, khi ở tần số trung bình và cao nó trở thành trở kháng của cảm biến Trên thực tế ở dải thông thường sử dụng, người ta dùng mạch tương đương biểu diễn ở hình 6.5b
Khi nối cảm biến với mạch ngoài bằng cáp dẫn, trở kháng của cáp dẫn tương
đương điện trở R1 và tụ điện C1 mắc song song với cảm biến, khi đó mạch tương
đương có dạng hình 6.5c
b) Sơ đồ khuếch đại điện áp
Trở kháng vào của bộ khuếch đại điện áp tương đương với một điện trở Re mắc song song với một tụ Ce, khi đó mạch tương đương có dạng hình 6.6
Điện áp ở lối vào của khuếch đại xác định bởi công thức:
P C R 1
P C R C
Q V
eq eq
eq eq q
c) Sơ đồ khuếch đại điện tích
Trong mạch khuếch đại điện tích, sự di chuyển của điện tích ở lối vào sẽ gây nên ở lối ra một điện áp tỉ lệ với điện tích đầu vào Bộ khuếch đại điện tích gồm một
bộ biến đổi điện tích - điện áp đầu vào, một tầng chuẩn độ nhạy, một bộ lọc trung gian và một số tầng khuếch đại ở đầu ra để cung cấp tín hiệu ra (hình 6.7a)
dQ
e Ce
V m
Cảm biến và cáp nối Trở kháng vào và
khuếc đại điện thế
Hình 6.6 Sơ đồ tương đương của cảm biến mắc nối tiếp với bộ khuếch đại điện thế
V m
dQ
e S
1 R
1 R
e S