1. Trang chủ
  2. » Luận Văn - Báo Cáo

Research report, "Some convergence theorems for arrays of two average index of random elements in Banach spaces with integrable conditions on" pptx

10 255 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 218,38 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Mean Convergence Theorems for Double Arrays of Random Elements in Banach Spaces under Some Conditions of Uniform Integrability Le Van Dunga Abstract.. This convergence results are of the

Trang 1

Mean Convergence Theorems for Double Arrays of Random Elements in Banach Spaces under Some

Conditions of Uniform Integrability

Le Van Dung(a)

Abstract In this paper, we establish some mean convergence theorems for the double sums Pu m

i=x m

Pv n

j=y nAmnijVij, for an array of random elements

{Vij; i, j ∈ Z}in a real separable Banach space and an array of random variables

{Amnij; xm 6 i 6 um, yn 6 j 6 vn, m > 1, n > 1}, where{xm, m ≥ 1},

{um, m ≥ 1},{yn, n ≥ 1}and{vn, n ≥ 1}are four sequences of integers.

I Introduction

Consider an array{Vij; i, j ∈ Z}of random elements defined on a probability space

(Ω, F , P)and an array{Amnij; xm 6 i 6 um, yn 6 j 6 vn, m > 1, n > 1}of random variables Let{xn, n ≥ 1},{un, n ≥ 1},{yn, n ≥ 1}and{vn, n ≥ 1}be four sequences

of integers such thatun−xn > 0for alln ≥ 1andun−xn → ∞asn → ∞,vn−yn> 0

for alln ≥ 1andvn− yn→ ∞asn → ∞ In this paper, mean convergence theorems will be established This convergence results are of the form

k

u m

X

i=x m

v n

X

j=y n

AmnijVijk−→ 0.Lp

Limit theorems for weighted sums (with or without random indies) for random variables (real-valued or Banach space-valued) are studied by many authors in [1], [4], [7] Recently, M Ordonez Cabrera and A Volodin obtained a mean convergence theorem for the weighted sumsPv n

j=u nAnjVj in L1 under some conditions of uniform integrability (see [2]) However, the same problems for double sums have not yet been studied

II Preliminaries

Theexpected valueormean of a random elementV, denoted byEV is defined to be thePettis integral provided it exists That is,V hasexpected value EV ∈ X if f (EV ) =

Ef (V )for everyf ∈ X∗, where X∗ denotes the (dual) space of all continuous linear functionals onX A sufficient condition forEV to exist is thatEkV k < ∞(see, e.g., Taylor [6], p.40)

1 NhËn bµi ngµy 15/8/2007 Söa ch÷a xong ngµy 12/12/2007.

Trang 2

Consider an array of random variables {Anj; un 6 j 6 vn, n ≥ 1} and an array

{Vj, j ∈ Z} of random elements in a real separable Banach space X with a normal

k · k, defined on a probability space(Ω, F , P) Let{Fn, n ≥ 1}be a sequence of subσ -algebras ofF For eachn ≥ 1, denote byEFn(Y )the conditional expectation of random variableY toFn The array{Vj, j ∈ Z} is said to be{Anj}-conditionally uniformly

pth-order integrable relative to {Fn} if, for each  > 0, there existsao = ao() > 0

such that

sup

n≥1

v n

X

j=u n

|Anj|pEFn(kVjkpI(kVjk > ao)) <  a.s

The notion of conditionally uniformly integrable was introduced by M Ordonez Cabr-era and A Volodin [2] IfAnj = anj (nonrandom) a.s., for allun 6 j 6 vn, n ≥ 1, and

Fn = {∅, Ω}for all n ≥ 1, then {Anj}-conditionally uniformlypth-order integrable relative to{Fn} coincides{|anj|p}-uniform integrability for the array of random vari-ables{kVjkp, j ∈ Z}

Lemma 1 Let {kmn, m ≥ 1, n ≥ 1} be an array of positive integers such that

limm∨n→∞kmn = ∞, and let {Xij; i, j ∈ Z} be an array of random variables such that

sup

a>0

sup

n≥1

1

kmn

u m

X

i=x m

v n

X

i=y n

aP{|Xij| > a} 6 M < ∞, (2.1) and

lim

a→+∞sup

n≥1

1

kmn

u m

X

i=x m

v n

X

j=y n

aP{|Xij| > a} = 0 (2.2)

Then

1

kpmn

u m

X

i=x m

v n

X

i=y n

E(|Xij|pI(|Xij| 6 kmn)) → 0 as m ∨ n → ∞ (p > 1) (2.3)

Proof

1

kmnp

u m

X

i=x m

v n

X

j=y n

E(|Xij|pI(|Xij| 6 kmn)) =

= 1

kmnp

u m

X

i=x m

v n

X

j=y n

E(|Xij|pI(|Xij| 6 1)) + 1

kpmn

u m

X

i=x m

v n

X

j=y n

k mn

X

l=2

E(|Xij|pI(l − 1 < |Xij| 6 l))

=: Amn+ Bmn

Trang 3

We first verify that

lim

m∨n→∞Amn= 0

Amn= 1

kpmn

u m

X

i=x m

v n

X

i=y n

E(|Xij|pI(|Xij| 6 1))

= 1

kpmn

u m

X

i=x m

v n

X

j=y n

X

l=1

E(|Xij|pI( 1

l + 1 < |Xij| 6 1

l))

!

6 1

kmnp

u m

X

i=x m

v n

X

j=y n

X

l=1

1

lpP{ 1

l + 1 < |Xij| 6 1

l}

!

= 1

kpmn

u m

X

i=x m

v n

X

j=y n

X

l=1

1

lp

 P{|Xij| > 1

l + 1} − P{|Xij| > 1

l}

!

= 1

kpmn

u m

X

i=x m

v n

X

j=y n

X

l=1

 1

lp − 1 (l + 1)p

 P{|Xij| > 1

l + 1}

!

= 1

kmnp−1

X

l=1

 1

lp − 1 (l + 1)p

 (l + 1) 1

kmn

u m

X

i=x m

v n

X

j=y n

1

l + 1P{|Xij| > 1

l + 1}

!

6 M 1

kmnp−1

X

l=1

 1

lp − 1 (l + 1)p

 (l + 1) (by (2.1))

= M 1

kmnp−1

(

X

l=1

1

Next, we will show that

lim

m∨n→∞Bmn= 0

In deed, since

k mn

X

l=2

(lp− (l − 1)p)

kp−1mn(l − 1) =

1

kmnp−1

k mn

X

l=2

lp

(l − 1)l +

kmn

kmn− 1 −

2p−1

kp−1mn

6 2

kp−1mn

k mn

X

l=2

lp−2+ kmn

kmn− 1 6 4,

Trang 4

By (2.2) we have

Bmn = 1

kmnp

u m

X

i=x m

v n

X

j=y n

k mn

X

l=2

E(|Xij|pI(l − 1 < |Xij| 6 l))

!

6 1

kpmn

u m

X

i=x m

v n

X

j=y n

k mn

X

l=2

lpP{l − 1 < |Xij| 6 l}

!

= 1

kmnp

u m

X

i=x m

v n

X

j=y n

k mn

X

l=2

lp[P{|Xij| > l − 1} − P{|Xij| > l}]

!

= 1

kmnp

u m

X

i=x m

v n

X

j=y n

k mn

X

l=2

[lp− (l − 1)p]P{|Xij| > l − 1}

!

=

k mn

X

l=2

"

(lp− (l − 1)p)

kmnp−1(l − 1)

1

kmn

u m

X

i=x m

v n

X

i=y n

(l − 1)P{|Xij| > l − 1}

!#

6 4 1

kmn

u m

X

i=x m

v n

X

j=y n

(l − 1)P{|Xij| > l − 1}

6 4 sup

m≥1,n≥1

1

kmn

u m

X

i=x m

v n

X

j=y n

(l − 1)P{|Xij| > l − 1}

So the conclusion (2.3) follows from (2.4) and (2.5)

Corollary 1 Let {amnij; xm 6 i 6 um, yn 6 j 6 vn, m ≥ 1, n ≥ 1} be an array of constants satisfying

u m

X

i=x m

v n

X

j=y n

|amnij| 6 M < ∞ and

sup

x m 6i6u m ,y n 6j6v n

|amnij| → 0 as m ∨ n → ∞

Suppose that the array of random variables{Xij; i, j ∈ Z}is{|amnij|}-uniformly inte-grable in the sense that

lim

a→+∞ sup

m≥1,n≥1

u m

X

j=x

u n

X

j=y

|amnij|E(|Xij|I(|Xij| > a)) = 0

Trang 5

Setcmn = 1

sup

x m 6i6u m ,y n 6j6v n

|amnij|, then

u m

X

i=x m

v n

X

j=y n

|amnij|qE(|Xij|qI(|Xij| 6 cmn)) → 0 as m ∨ n → ∞ (q > 1)

Proof Applying Lemma 1 with kmn= [cmn] + 1 and Xij is replaced by amnijcmnXij

Let{Yn, n ≥ 1}be a symmetricBernoulli sequence, that is, {Yn, n ≥ 1}is a se-quence of independent and identically random variables withP{Y1 = 1} = P{Y1 =

−1} = 1/2 LetX∞= X × X × X × and define

C(X ) = {(v1, v2, ) ∈ X∞ :

X

n=1

vnvn converges in probability}

Let1 6 p 6 2 Then the real separable Banach spaceX is said to be ofRademacher type pif there exists a constantC (0 < C < ∞)such that

Ek

X

n=1

Ynvnkp

6 C

X

n=1

kvnkp for all (v1, v2, v3, ) ∈ C(X ) (2.6)

Hoffmann-Jφrgensen and Pisier [6] proved for1 6 p 6 2that a real separable Banach space is ofRademacher type pif only if there exists a constant C (0 < C < ∞)such that

E

n

P

j=1

Vjk

p

6 C

n

X

j=1

for every finite collection{V1, V2, , Vn}of independent mean 0 random elements

If a real separable Banach space is of Rademacher type p for some1 < p 6 2, then

it is of Rademacher type r for all1 6 r < p Every real separable Banach space is of Rademacher type (at least) 1 while theLp-space andlp-space are of Rademacher type

2 ∧ pfor p ≥ 1 Every real separable Hilbert space and real finite dimensional Banach space is of Rademacher type 2

Fora, b ∈ R, min{a, b}andmax{a, b} will be denoted, respectively, bya ∧ band

a∨b Throughout this paper, the symbolCwill denote a generic constant(0 < C < ∞)

which is not necessarily the same one in each appearance

III Main results

Theorem 1 Let 1 6 r < p 6 2 Let {Vij; i, j ∈ Z}be an array of mean 0 random elements defined on a probability space(Ω, F , P)and taking values in a real separable

Trang 6

Rademacher typepBanach spaceX,{Amnij; xm 6 i 6 um, yn 6 j 6 vn, m > 1, n > 1}

be an array of random variables satisfying

u m

X

i=x m

v n

X

j=y n

E|Amnij|r

and

sup

x m 6i6u m ,y n 6j6v n

E|Amnij|r→ 0 as m ∨ n → ∞ (3.2)

Let{Fmn; m ≥ 1, n ≥ 1} be an array of subσ-algebras of F such thatAmnij, xm 6

i 6 um, yn 6 j 6 vn are Fmn-measurable Suppose that {Vij; i, j ∈ Z} is{Amnij} -conditionally uniformlyrth-order integrable relative to{Fmn}in the sense that

lim

a→+∞ sup

m≥1,n≥1

u m

X

i=x m

v n

X

j=y n

|Amnij|rEFmn(kVijkrI(kVijk > a)) = 0 a.s (3.3)

Suppose for allm ≥ 1andn ≥ 1 the array{AmnijVij; xm 6 i 6 um, yn 6 j 6 vn}

is comprised of independent random elements, Amnij and Vij are independent for all

m ≥ 1, n ≥ 1, xm 6 i 6 um, yn6 j 6 vn Then

u m

X

i=x m

v n

X

j=y n

AmnijVij

L r

Proof Since (3.3) there exists ao > 0 such that

E

u m

X

j=x m

v n

X

j=y n

|Amnij|rEFmn(kVijkrI(kVijk > ao))

!

< 1, m ≥ 1, n ≥ 1

Thus

EkAmnijVijI(kVijk > ao)k < 1 for all xm 6 i 6 um, yn6 j 6 vn, m ≥ 1, n ≥ 1

(3.5) For all m ≥ 1, n ≥ 1, xm 6 i 6 um, yn6 j 6 vn, (by (3.1) and (3.5) we have

EkAmnijVijk = EkAmnijVijI(kVijk 6 ao)k + EkAmnijVijI(kVijk > ao)k

6 aoE|Amnij| + EkAmnijVijI(kVijk > ao)k < ∞

implying that E(AmnijVij) exists Set cmn = 1

sup

x m 6i6u m ,y n 6j6v n

E|Amnij|r,

Vmnij0 = VijI(kVijk 6 cmn), Vmnij00 = VijI(kVijk > cmn),

Trang 7

b0mnij = EVmnij0 , b00mnij = EVmnij00 Observe that for each i and j, xm 6 i 6 um, yn 6 j 6 vn, then Vij = (Vmnij0 − b0

mnij) + (Vmnij00 − b00

mnij) And since Amnij and Vij are independent for each m, n, i, j we have E(Amnij(Vij0 − b0mnij)) = E(Amnij(Vmnij00 − b00mnij)) = 0

Hence

E

u m

X

i=x m

v n

X

j=y n

AmnijVij

r

= E

u m

X

i=x m

v n

X

j=y n

Amnij(Vmnij0 − b0mnij) +

u m

X

i=x m

v n

X

j=y n

Amnij(Vmnij00 − b00mnij)

r

6 CE

u m

X

i=x m

v n

X

j=y n

Amnij(Vmnij0 − b0mnij)

r

+ CE

u m

X

i=x m

v n

X

j=y n

Amnij(Vmnij00 − b00mnij)

r

(by cr-inequality)

6 C E

u m

X

i=x m

v n

X

j=y n

Amnij(Vmnij0 − b0mnij)

p!r/p

+ CE

u m

X

i=x m

v n

X

j=y n

Amnij(Vmnij00 − b00mnij)

r

6 C

u m

X

i=x m

v n

X

j=y n

EkAmnij(Vmnij0 − b0mnij)kp

!r/p

+ C

u m

X

i=x m

v n

X

j=y n

EkAmnij(Vmnij00 − b00mnij)kr

6 C

u m

X

i=x m

v n

X

j=y n

E|Amnij|pE(kVijkpI(kVijk 6 cmn))

!r/p

+ C

u m

X

i=x m

v n

X

j=y n

E(kAmnijVijkrI(kVijk > cmn))

Now, by (3.3), for arbitrary  > 0 there exists ao > 0 such that for all a ≥ ao We have

m≥1,n≥1

u m

X

j=x m

v n

X

j=y n

|Amnij|rEFmn(kVijkrI(kVijk > a))

!

<  (3.6) This implies

sup

m≥1,n≥1

u m

X

i=x

v n

X

j=y

E|Amnij|rE(kVijkrI(kVijk > a)) <  ∀a ≥ ao (3.7)

Trang 8

Note that (3.6) means {kVijkr

; i, j ∈ Z} is {E|Amnij|r}-uniformly integrable, and then

by Corollary 1 with q = p/r, Xij = kVijkr and amnij = E|Amnij|r we get

u m

X

i=x m

v n

X

j=y n

|Amnij|pE(kVijkpI(kVijk 6 cmn)) → 0 as m ∨ n → ∞

On the other hand (3.6) also implies

u m

X

i=x m

v n

X

j=y n

E(kAmnijVijkrI(kVijk > cmn) → 0 as m ∨ n → ∞

Thus

E

u m

X

i=x m

v n

X

j=y n

AmnijVij

r

→ 0 as m ∨ n → ∞

The proof is completed

Theorem 2 Let 0 < r < 1 Let{Vij; i, j ∈ Z} be an array of random elements in a real separable Banach space,{Amnij; xm 6 i 6 um, yn 6 j 6 vn, m > 1, n > 1}be an array of random variables satisfying

u m

X

i=x m

v n

X

j=y n

(E|Amnij|)r 6 M < ∞ (3.8) and

sup

x m 6i6u m ,y n 6j6v n

E|Amnij| → 0 as m ∨ n → ∞ (3.9)

Let {Fmn; m ≥ 1, n ≥ 1} be an array of sub σ-algebras of F, and suppose that

Amnij, xm 6 i 6 um, yn 6 j 6 vn are Fmn-measurable Suppose that {Vij; i, j ∈ Z}

is{Amnij}-conditionally uniformlyrth-order integrable relative to {Fmn}in the sense that(3.3)holds

Then

u m

X

i=x m

v n

X

j=y n

AmnijVij −→ 0 as m ∨ n → ∞.Lr (3.10)

Proof By (3.3), for arbitrary  > 0 there exists a > 0 such that

m≥1,n≥1

u m

X

j=x m

v n

X

j=y n

|Amnij|rEFmn(kVijkrI(kVijk > a))

!

< 

2, this implies

u m

X

i=x

v n

X

j=y

E(kAmnijVijkrI(kVijk > a)) < 

2, m ≥ 1, n ≥ 1.

Trang 9

On the other hand, since

E

u m

X

j=x m

v n

X

j=y n

AmnijVijI(kVijk 6 a)

r!1/r

6 E

u m

X

j=x m

v n

X

j=y n

AmnijVijI(kVijk 6 a)

6

u m

X

j=x m

v n

X

j=y n

E(kAmnijVijkI(kVijk 6 a)) 6 a

u m

X

j=x m

v n

X

j=y n

E|Amnij|

6 a

u m

X

j=x m

v n

X

j=y n

(E|Amnij|)r

!

sup

x m 6i6u m ,y n 6j6v n

(E|Amnij|)1−r

x m 6i6u m ,y n 6j6v n

(E|Amnij|)1−r → 0 as m ∨ n → ∞, there exists mo, no such that for all (m ∨ n) ≥ (mo∨ no),

E

u m

X

i=x m

v n

X

j=y n

AmnijVijI(kVijk 6 a)

r

6 

Hence,

E

u m

X

i=x m

v n

X

j=y n

AmnijVij

r

= E

u m

X

i=x m

v n

X

j=y n

AmnijVijI(kVijk 6 a) +

u m

X

i=x m

v n

X

j=y n

AmnijVijI(kVijk > a)

r

6 E

u m

X

i=x m

v n

X

j=y n

AmnijVijI(kVijk 6 a)

r

+ E

u m

X

i=x m

v n

X

j=y n

AmnijVijI(kVijk > a)

r

6 E

u m

X

i=x m

v n

X

j=y n

AmnijVijI(kVijk 6 a)

r

+

u m

X

i=x m

v n

X

j=y n

E(kAmnijVijkrI(kVijk > a)) <  for all (m ∨ n) ≥ (mo∨ no),

which completes the proof

Remark A basic hypothesis in all of the previous theorems in this section is condi-tion "{Amnij; xm 6 i 6 um, yn 6 j 6 vn, m > 1, n > 1}areFmn-measurable for each

m ≥ 1,n ≥ 1" A particular case of great interest, in which this condition is satisfied,

is whenFmn = σ(Amnij, xm 6 i 6 um, yn 6 j 6 vn), i.e., whenFmnis the σ-algebra generated by{Amnij; xm 6 i 6 um, yn 6 j 6 vn, m > 1, n > 1}, for eachm ≥ 1and

Trang 10

n ≥ 1.

references

[1] A Adler, A Rosalsky and R I Taylor, A weak law for normed weighted sum of ran-dom elements in Rademacher typepBanach space, Journal of Multivariate Analysis,

37 (2), 1991, 259-268

[2] M O Cabrera, A I Volodin, Convergence of randomly weighted sums of Banach-space-valued random elements under some conditions of uniform integrability, Journal

of Mathematical Sciences, 138 (1), 2006, 5450-5459

[3] J Hoffmann-Jφrgensen and G Pisier, The law of larger numbers and the central limit theorem in Banach space, Ann Probab., 4, 1976, 587-599

[4] A Rosalsky, M Sreehari, and A I Volodin, Mean convergence theorem with or with-out random indies for randomly weighted sums of random elements in Rademacher typepBanach space, Stochastic Analysis and Applications ,21 (5) (2003), 1169-1187 [5] A Rosalsky, M Sreehari and A I Volodin, A weak law with random indies for randomly weighted sums of rowwise independent random elements in Rademacher typepBanach space, Calcutta Staist Asoc Bull.,52, 2002, 85-98

[6] R L Taylor, Stochastic Convergence of Weighted Sums of Random Elements in Linear Space, Lecture Notes in Mathematic; Springer-Verlag: Berlin, 672, 1978 [7] L V Thanh, Mean convergence theorems and weak laws of large numbers for double arrays of random variables, Journal of Applied Mathemmatics and Stochastic Analy-sis, 2006, 1-15

Tóm tắt

Một số định lý hội tụ trung bình đối với mảng hai chỉ số các phần

tử ngẫu nhiên trong không gian Banach với điều kiện khả tích đều

Trong bài báo này, chúng tôi thiết lập một số định lý hội tụ trung bình cho tổng hai chỉ sốPu m

i=x m

Pv n

j=y nAmnijVij, đối với mảng các phần tử ngẫu nhiên{Vij; i, j ∈ Z}nhận giá trị trên không gian Banach thực và mảng các đại lượng ngẫu nhiên{Amnij; xm 6

i 6 um, yn 6 j 6 vn}, trong đó{xm, m ≥ 1},{um, m ≥ 1},{yn, n ≥ 1}và{vn, n ≥ 1}

là bốn dãy số nguyên

(a) 13thprobability class, Department of postgraduate, Vinh University.

Ngày đăng: 23/07/2014, 14:21

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm