Deep connate water show a wide range of Eh and pH depending on their history and how much they’ve mixed with meteoric water.Oilfield brines tends to be more alkaline and more strongly re
Trang 1CHAPTER 06
THE SUBSURFACE
ENVIRONMENT
Trang 21- GROUND WATER AND
TEMPERATURE
1.1 – GROUND WATER
1.1.1 – Origin of ground water
1.1.2 – Chemistry of ground water
1.2 – TEMPERATURE
1.2.1 – Subsurface Temperature
1.2.2 – Regional thermal Variations
1.2.3 – Local thermal Variations
Trang 404 Types of GW
Meteoric water
Infiltration of rainwater
Distribution @ shallow depth
Total mineralization: Low
Trang 504 Types of GW (cont.)
Juvenile water
Primary of magmatic origin
Brought to near – surface environment dissolved in magma
Usually mixed with either connate or meteoric water
Trang 61.1 2 – Chemistry of ground water
Connate water, meteoric water and mixed water can
be differentiated on the basics of their chemistry
Way can be done:
First:
Eh: Oxidation/reduction potential and
pH: Measure of acidity or alkalinity of the water
Trang 7Fig 01
Trang 8Deep connate water show a wide range of Eh and pH depending on their history and how much they’ve mixed with meteoric water.
Oilfield brines tends to be more alkaline and more strongly reducing than seawater
The Eh and pH of pore fluids control the precipitation and dissolution of cements such as the carbonates and ion oxides, as well as the alterations of clays minerals
in subsurface rocks Extremely important to understand the relationships of Eh and pH to diagenesis and the evolution of porosity
Trang 9Chemistry of ground water (cont.)
Second: Salinity
In general salinity of GW increases with depth
(normal hydrochemical profile)-Fig.02 The rate of
increases varies from basin to basin, even from place
to place within a particular basin
Typical seawater has a salinity of about 35ppthousand (3.5%)
The salinity of GW range from near zero (in newly introduced meteoric to > 600ppthousand (60%) in connate water within evaporate formation
Trang 10Fig 02
Trang 11Reversal hydrochemical profile have been observed
due to two possible causes:
1 Meteoric can be trapped beneath an unconformity and preserved as “Paleoaquifer” with relative low salinity as compared connate water above the unconformity
2 Overpressure: In shale sequences, formation water is trapped
In shale, the increases in salinity with depth is less noticeable than in sandstones: Water moves upwards
in compacting sediments, shale acts at semipermeable membranes preventing salt escaping from the sands
Trang 12Four major sub environment:
1 Zone 1 (surface → 1km) uniform Zone of
circulating meteoric water Salinity fairly uniform;
2 Zone 2 (1 → 3km) gradually increases with depthSaline formation water is ionized;
3 Zone 3 (3km) Chemically reducing
environment, in which hydrocarbons form Salinity uniform with increasing depth; may even decline
if overpressured;
4 Zone 4 incipient metamorphism with
recrystallization of clays to micas
Trang 13Oder Catelogy Total dissolved Solids
Trang 14Oder Catelogy Total dissolved Solids
Trang 15° Regional isosalinity maps are very useful exploration tools.
Area of high salinity possible indicate stagnant regional are uneffected by meteoric flushing
(where oil/gas accumulation may be preserved)
Trang 16° Meteoric water differs from connate water both salinity and proportions of dissolved irons
° Meteoric water divided to:
+ High proportions of SO2-4 and Na+
+ High CO2-3 and Na+
Trang 17Connate water divided to:
+ High proportions of CL- and Mg2+
+ High CL- and Ca2+
° In comparison to seawater, connate water high concentration of soluble chlorine and sodium (Tab 03)
(Br more abundant than is seawater)
° SO2-4 in connate water << seawater:
+ Precipitation of CaSO4
+ SO2-4 reduction by bacterial action, producing
H2S gas
Trang 18Table 03
Trang 19° Depletion of Mg2+ in connate water due to dolomitize
° Ca2+ in connate water > in seawater:
+ Release of calcium from dolomitize
Trang 20• Depletion of potassium probably results from the uptake of that element by clay minerals.
• Connate waters also contain traces of dissolved
hydrocarbons which are not common in normal
sea water (Buckley et al., 1958)
– This is significant for two reasons First, it raises the
possibility of regionally mapping dissolved
hydrocarbons as a key to locating new oil and gas
fields Second, it has some bearing on the migration of
both oil and gas
Trang 21GW research application in O&G Exploitation &
Exploration (By Tran van Xuan)
• Các mẫu nước mỏ dầu đạt yêu cầu được phân tích để xác định:
– Tổng độ khoáng hóa, một số nguyên tố, ion (Cl-, SO42-, HCO3-,
Na + & K + , Mg 2+ , Ca 2+ …)
– Quan hệ giữa các ion
– Xác lập một số quan hệ tỷ lệ, phân loại theo Sulin
– Đánh giá sự thay đổi của độ tổng khoáng hoá theo chiều sâu.
• Ngoài ra một số mẫu nước còn được tiến hành phân tích hàm lượng vi nguyên tố như I, Br, Sr,….
• Tính toán khả năng sa lắng của canxit, thạch cao và sinh khí CO2 tự do
• Đánh giá nguồn gốc, quá trình biến đổi của nước các mỏ.
Trang 23GW research application in O&G Exploitation &
Exploration (Cont.)
• + Phân loại Xulin: Phân loại của Xulin dựa trên cơ sở
phân chia các loại nước theo các tỉ số nhất định của các ion, đặc trưng cho các điều kiện thành tạo khác nhau
của nước dưới đất nói chung và đặc biệt với nước dưới đất trong các vùng mỏ dầu khí; vì vậy phân loại này
được sử dụng rộng rãi trong địa chất thuỷ văn các mỏ dầu khí.
• Trên cơ sở xem xét các mối quan hệ (Trong đó rNa+, rCl- … được tính bằng %đl/l):
Trang 24• Xulin chia nước DĐ thành 4 loại:
• 1 Loại nước sunphat natri có nguồn gốc rửa lũa đại lục, được đặc trưng bằng:
• 2 Loại nước bicabonat natri (nước kiềm) có nguồn gốc đại lục, khí quyển được đặc trưng bằng:
Trang 25• 3 Loại nước clorua magie liên quan với nguồn gốc biển và
được đặc trưng bằng:
• 4 Nước clorua canxi (nước cứng) có nguồn gốc biến chất sâu
(liên quan với các mỏ dầu khí) được đặc trưng bằng:
<1 và
2 4
2 4
Trang 26GW Classification by Xulin (Russia)
Fig 03
Trang 28• Lithostatic pressure is due to the weight of the rock
overburden It is transmitted through the subsurface
by grain-to-grain contacts in the rocks
• The magnitude of this lithostatic pressure at a
particular depth depends on the depth, the density of the overlying rocks, and the acceleration due to
gravity
• The lithostatic pressure gradient increases with depth and is approximately 0.6 psi/ft ( 0.136 kg/cm2 * m )
or ( 13.6 kPa/m )
Trang 29• The fluid pressure, often called "pore pressure" or
"formation pressure", is applied by the fluids within the pore spaces These fluids exert pressure against
the grains
• When the pressure in the pores is caused only by the weight of the column of fluid in the rocks above, it is
called hydrostatic pressure
• For a column of fresh water with a density of 1
gm/cm3, the hydrostatic gradient is 433 psi/ft (0.0979 kg/cm 2 * m) or ( 9.79 kPa/m) The gradient increases with increasing salinity of the water to about 465
psi/ft (0.1052 kg/cm2 * m) or (10.52 kPa/m) for
typical connate water
Trang 30In the oil industry, fluid pressure is usually calculated as:
p = 0.052 x wt x d where:
– p = hydrostatic pressure ( psi )
– wt = mud height ( lb/gallon )
– d = depth ( ft )
The overburden pressure, which is also called geostatic
pressure, is equal to the sum of the hydrostatic pressure plus the lithostatic pressure This pressure may also be thought of
as the pressure caused by the weight of water plus sediment per unit area The overburden pressure increases with depth
kPa/m )
Trang 31• Figure 03 summarizing differences between lithostatic and fluid pressure gradients we might normally expect to see