1. Trang chủ
  2. » Giáo án - Bài giảng

Tiết 51: Quan hệ giữa ba cạnh cuat một tam giác. Bất đẳng thức tam giác

15 409 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 313 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Câu hỏi: Hãy nêu định lí về quan hệ giữa đ ờng xiên và hình chiếu?. A C d Trên hình vẽ có hai đ ờng xiên AB = CD vậy vì sao hình chiếu BH DK?.  Vì hai hình xiên hạ từ hai điểm khác nhau

Trang 1

Gi¸o viªn d¹y: Ph¹m Ngäc Hoµn

Tr êng THCS H ng Tr¹ch

Líp: 7B

Trang 2

Câu hỏi: Hãy nêu định lí về quan hệ giữa đ ờng xiên và hình

chiếu?

A

C

d

Trên hình vẽ có hai đ ờng xiên AB = CD vậy vì sao hình chiếu BH DK? 

Vì hai hình xiên hạ từ hai điểm khác nhau tới hai đ ờng thẳng khác nhau

a

Cho hình vẽ sau:

Trang 3

A B

C

Trang 4

B 4 C

1 Bất đẳng thức tam giác:

?1 Hãy vẽ tam giác với các cạnh có độ dài 1 cm, 2 cm, 4 cm?

Không vẽ đ ợc một tam giác

Trang 5

Tiết 51: Quan hệ giữa ba cạnh của một tam giác.

Bất đẳng thức tam giác

1 Bất đẳng thức tam giác:

?1 Hãy vẽ tam giác với các cạnh có độ dài 1 cm, 2 cm, 4 cm?

Định lí:

Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài cạnh còn lại

A

 ABC Cho Ta có các bất đẳng thức:

• AB + AC > BC

• AB + BC > AC

• AC + BC > AB

GT

KL

Trang 6

1 Bất đẳng thức tam giác:

Định lí:

Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài

cạnh còn lại

A

B

C

ABC

• AB + AC > BC

• AB + BC > AC

• AC + BC > AB

GT

KL

Trên tia đối của tia AB, lấy điểm D sao cho AD = AC

D

Trong tam giác BCD, ta sẽ so sánh giữa BD với BC

=> AB + AC = AB + AD = BD

Trang 7

Tiết 51: Quan hệ giữa ba cạnh của một tam giác.

Bất đẳng thức tam giác

D C A D C

C D B C D A D C

1 Bất đẳng thức tam giác:

Định lí: Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn

độ dài cạnh còn lại

A

B

C

ABC

• AB + AC > BC

• AB + BC > AC

• AC + BC > AB

GT

KL

Trên tia đối của tia AB, lấy điểm D sao cho AD = AC

D

Trong tam giác BCD, ta sẽ so sánh giữa hai tia BD với BC

=> AB + AC = AB + AD = BD

Từ (1) và (2) suy ra: B Cˆ D B DˆC (3)

Trang 8

Định lí: Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài cạnh còn lại

Tam giác ABC ta có bất đẳng thức: • AB + AC > BC

• AB + BC > AC

• AC + BC > AB

2 Hệ quả của bất đẳng thức tam giác:

Từ bất đẳng thức:

AB + AC – AC > BC – AC (Trừ hai vế cho AC)

 AB > BC - AC

T ơng tự với các tr ờng hợp khác: AB > AC – BC

BC > AB – AC AC > AB – BC

BC > AC – AB AC > BC - AB

AB + AC > BC

Ta có bất đẳng thức:

Trang 9

Tiết 51: Quan hệ giữa ba cạnh của một tam giác.

Bất đẳng thức tam giác

1 Bất đẳng thức tam giác:

Định lí: Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng

lớn hơn độ dài cạnh còn lại

Tam giác ABC ta có bất đẳng thức: • AB + AC > BC

• AB + BC > AC

• AC + BC > AB

2 Hệ quả của bất đẳng thức tam giác:

Ta có các bất đẳng thức:

AB > AC – BC BC > AB – AC AC > AB –

BC

AB > BC – AC BC > AC – AB AC >BC - ABHệ quả:

Trong một tam giác, hiệu độ dài hai cạnh bất kì bao giờ cũng nhỏ hơn độ dài cạnh còn lại

Trang 10

Định lí: Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn

độ dài cạnh còn lại

Tam giác ABC ta có bất đẳng thức: •AB + AC > BC

AB + BC > AC

AC + BC > AB

2 Hệ quả của bất đẳng thức tam giác:

Ta có các bất đẳng thức:

AB > AC BC BC > AB AC AC > AB BC

AB > BC AC BC > AC AB AC >BC - AB

Hệ quả:

Trong một tam giác, hiệu độ dài hai cạnh bất kì bao giờ cũng nhỏ hơn độ dài cạnh còn lại

Nếu xét tổng AB + AC và hiệu AB – AC so với BC thì ta có nhận xét gì?

Nhận xét: Trong một tam giác, độ dài một cạnh bao giờ cũng

lớn hơn hiệu và nhỏ hơn tổng các độ dài của hai cạnh còn lại

Trang 11

?3 Em hãy gải thích vì sao không có tam giác với ba cạnh có

độ dài 1 cm, 2 cm, 4 cm?

Vì: Tổng độ dài hai cạnh bé hơn một cạnh:

1 cm + 2 cm < 4 cm

Trái với bất đẳng thức tam giác

Hay: Hiệu độ dài hai cạnh lại lớn hơn một cạnh:

1 cm < 4 cm – 2 cm

Trái với

hệ quả

Trang 12

Bài 1: Dựa vào bất đẳng thức tam giác, kiểm tra xem bộ ba nào trong các bộ

ba đoạn thẳng có độ dài cho sau đây không thể là ba cạnh của một tam giác:

Hãy tìm độ dài cạnh AB, biết rằng độ dài này là một số nguyên (cm) Tam giác

ABC là tam giác gì?

Giải:

Trong tam giác ABC, với cạnh AB ta có:

AC – BC < AB < AC + BC

 7 cm – 1 cm < AB < 7 cm + 1 cm

 6 cm < AB < 8 cm

Do AB là một số nguyên nên AB = 7 cm

Tam giác ABC là tam giác cân tại A vì AB = AC = 7 cm

Trang 13

Bài tập về nhà

 Học thuộc định lí Bất đẳng thức tam giác

 Nắm bất đẳng thức tam giác và hệ quả của bất

đẳng thức

 Làm các bài tập 18, 19, 20, 21 (SGK)

 Chuẩn bị tiết sau luyện tập

Trang 15

H íng dÉn vÒ nhµ:

Bai 3: Cho tam gi¸c ABC vµ M lµ mét ®iÓm n»m trong tam gi¸c Gäi I lµ giao ®iÓm cña ® êng th¼ng BM vµ c¹nh AC

M

I A

B

C

Ngày đăng: 16/07/2014, 00:01

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w