Khái niӋm chung Trên thành bình chӭa chҩt lӓng có khoét mӝt lӛ, dòng chҩt lӓng chҧy qua lӛ gӑi là dòng chҧy ra khӓi lӛ; vòi là mӝt ӕng ngҳn dính liӅn vӟi thành bình chӭa, chiӅu dài 3 4y
Trang 1CHѬѪNG VI
Flow through orifices, nozzles – jet flow
***
A - DÒNG CHҦY RA KHӒI LӚ VÒI
I Khái niӋm chung
II Phân loҥi lә
1 Theo kích thѭӟc lә
2 Theo ÿӝ dày cӫa thành lә
3 Theo hình thӭc nӕi tiӃp vӟi hҥ lѭu
III Dòng chҧy tӵ do әn ÿӏnh qua lӛ nhӓ thành mӓng
1 Bài toán tìm Q (hoһc v)
2 Hình dҥng cӫa dòng chҧy tӵ do ra khӓi lә.
III Dòng chҧy ngұp әn ÿӏnh qua lӛ to, nhӓ thành mӓng
IV Dòng chҧy tӵ do әn ÿӏnh qua lӛ to thành mӓng
V Dòng chҧy qua vòi
1 Khái niӋm
2 Vòi hình trө tròn gҳn ngoài (vòi Venturi)
VI Dòng chҧy không әn ÿӏnh qua lӛ nhӓ thành mӓng
B - DÒNG TIA
VII Phân loҥi, tính chҩt dòng tia
1 Ĉӏnh nghƭa
2 Dòng tia ngұp
3 Dòng tia không ngұp
VIII Nhӳng ÿһc tính ÿӝng lӵc hӑc cӫa dòng tia
BÀI TҰP CHѬѪNG VI
Trang 2CHѬѪNG 6
DÒNG CHҦY RA KHӒI LӚ VÒI - DÒNG TIA Flow through orifices, nozzles – jet flow
A - DÒNG CHҦY RA KHӒI LӚ VÒI
I Khái niӋm chung
Trên thành bình chӭa chҩt lӓng có khoét mӝt lӛ, dòng chҩt lӓng chҧy qua lӛ gӑi là dòng chҧy ra khӓi lӛ; vòi là mӝt ӕng ngҳn dính liӅn vӟi thành bình chӭa, chiӅu dài (3 4y )e d l d (8 y 10)e, dòng chҩt lӓng chҧy qua vòi gӑi là dòng chҧy ra khӓi vòi
II Phân loҥi lӛ.
Gӑi H: chiӅu cao tӯ mһt thoáng ÿӃn tâm lӛ
G: chiӅu dày cӫa thành lӛ
e:Ĉѭӡng kính cӫa lӛ
1 Theo kích thѭӟc lӛ:
10
1
H
e
: lӛ nhӓ - Cӝt nѭӟc tác dөng tҥi mӑi ÿiҿm trên lӛ xem nhѭ bҵng H
10
1
H
e
t : lӛ to - Cӝt nѭӟc tác dөng tҥi các ÿiӇm trên lә không bҵng nhau
2 Theo ÿӝ dày cӫa thành lӛ:
- NӃu lӛ sҳc cҥnh: G3y4e, ÿӝ dày thành lә không ҧnh hѭӣng ÿӃn hình dҥng dòng chҧy ra khӓi lә, gӑi là lӛ thành mӓng
- NӃu Gt3y4e, nó ҧnh hѭӣng ÿӃn hình dҥng dòng chҧy ra cӫa lә, gӑi là lӛ thành dày
3 Theo hình thӭc nӕi tiӃp vӟi hҥ lѭu
- Chҧy tӵ do: Dòng chҧy ra khӓi lӛ tiӃp xúc vӟi không khí, tӭc mӵc nѭӟc hҥ lѭu không làm ҧnh hѭӣng ÿӃn lѭu lѭӧng
lѭӧng qua lә
Trang 3C C
1 1
v0
Ho
H
0
g
v
2
2 0 D
III Dòng chҧy tӵ do әn ÿӏnh qua lӛ nhӓ thành mӓng
1 Bài toán tìm Q (hoһc v)
BiӃt:
°
¿
°
¾
½ p v
H
әn ÿӏnh không ÿәi theo thӡi gian
Tҥi mһt cҳt 1-1 có lѭu tӕc trung bình là v0 Chӫ yӃu là tәn thҩt cөc bô:
g
v h
2
2
[
- Dòng chҧy qua lӛ khi cӝt nѭӟc tác dөng H không ÿәi là mӝt dòng chҧy әn ÿӏnh; tӭc là lѭu tӕc, áp suҩt tҥi mӝt ÿiӇm cӕ ÿӏnh nào ÿó không ÿәi theo thӡi gian
- Khi chҩt lӓng chҧy ra khӓi lӛ, ӣ ngay trên mһt lӛ, các ÿѭӡng dòng không song song, nhѭng cách xa lӛ mӝt ÿoҥn nhӓ, ÿӝ cong cӫa các ÿѭӡng dòng giҧm dҫn các ÿѭӡng dòng trӣ thành song song vӟi nhau, ÿӗng thӡi mһt cҳt cӫa luӗng chҧy co hҽp lҥi, mһt cҳt
ÿó gӑi là mһt cҳt co hҽp C-C
- Vӏ trí mһt cҳt này phө thuӝc hình dҥng cӫa lӛ; ÿӕi vӟi lӛ hình tròn: mһt cҳt co hҽp ӣ cách lӛ chӯng mӝt nӱa ÿѭӡng kính lӛ Tҥi mһt cҳt co hҽp, dòng chҧy có thӇ coi là dòngÿәi dҫn; ra khӓi mһt cҳt co hҽp, dòng chҧy hѫi mӣ rӝng ra và rѫi xuӕng dѭӟi tác dөng cӫa trӑng lӵc
- Ta ÿi tìm công thӭc tính lѭu lѭӧng qua lӛ
+ ViӃt phѭѫng trình Becnoulli cho mһt cҳt 1-1 và C-C, vӟimһt chuҭn qua trӑng tâm lә:
w c c a a
h g
v p
g
v p
J
D
J
2
0 2
2 2
0
g
v H
g
v
c
2 2
2 0
2
D
Trongÿó: H0 Gӑi là cӝt nѭӟc thѭӧng lѭu kӇ cҧ lѭu tӕc ÿӃn gҫn
D [
o
c c
H g
vӟi Dc = 1 và ÿһt
D [ [
M
1
1 1
c
thì vc M 2.g.H0 , (6.2)
trong ÿó: M gӑi là hӋ sӕ lѭu tӕc
c
c.v
Gӑi
Z
Z
: là tӹ sӕ giӳa diӋn tích mһt cҳt co hҽp và diӋn tích lӛ
Ta có: Q M.H.Z 2.g.H0
thì :
Trang 42.g.H
Trongÿó: H: gӑi là hӋ sӕ co hҽp
P: gӑi là hӋ sӕ lѭu lѭӧng cӫa lӛ
- Ĉӕi vӟi lӛ tròn thành mӓng d t 1cm, vӟi Re > 105, H > 2m (ÿӕi vӟi nѭӟc) chúng ta có nhӳng trӏ sӕ sau ÿây: [ = 0,05 y 0,06; H = 0,63 y 0,64; M = 0,97 y 0,98,
P = 0,60 y 0,62, trung bình lҩy P = 0,61 Ngѭӡi ta thѭӡng dùng lӛ nhӓ, thành mӓng ÿӇ
ÿo lѭu lѭӧng
2 Hình dҥng cӫa dòng chҧy tӵ do ra khӓi lә
Quӻ ÿҥo cӫa dòng chҧy ra khӓi lӛ khoét trên thành ÿӭng có thӇ tính theo cách sau:
Ta lҩy trӑng tâm cӫa mһt cҳt co hҽp C-C làm gӕc toҥ ÿô, lѭu tӕc trung bình ӣ ÿó là vc Ta coiÿѭӧc rҵng phҫn tӱ chҩt lӓng chuyӇn ÿӝng theo quӻ ÿҥo cӫa mӝt vұt rҳn rѫi có tӕc ÿӝ banÿҫu vc Phѭѫng trình cӫa quӻ ÿҥo chuyӇn ÿӝng này ÿã ÿѭӧc nghiên cӭu trong cѫ hӑc chҩt rҳn, nó có dҥng parabol:
Nhѭ vұy: QNJy tích dòng chҧy ra khӓi lӛ là mӝt parabol
Trang 5III Dòng chҧy ngұp әn ÿӏnh qua lӛ to, hoһc nhӓ thành mӓng
- Khi ӣ sau lӛ có mһt tӵ do cӫa chҩt lӓng nҵm cao hѫn lӛ, có nghƭa dòng chҧy ra khӓi lӛ bӏ ngұp, lúc ÿó ta có dòng chҧy ngұp Cӝt nѭӟc tác dөng bҵng hiӋu sӕ cӝt nѭӟc ӣ thѭӧng lѭu vӟi hҥ lѭu Do ÿó, ÿӕi vӟi dòng chҧy ngұp không cҫn phân biӋt lӛ to, lӛ nhӓ
- ViӃt phѭѫng trình Becnoulli mһt cҳt 1-1 và 2-2 vӟi mһt chuҭn qua tâm lӛ (Xem
v2| 0)
w a
g
v p h g
v p
J
D
J
2 2
2 2 2
2 0
Tәn thҩt hwbao gӗm:
x Tәn thҩt khi qua lӛ
g
vc 2
2
[
x Tәn thҩt vì ÿӝt ngӝt mӣ rӝng
g
) v v ( c 2
2 2
= g
vc 2
2
(vì v2= 0 )
Doÿó:
g
v
2
2
[
g
vc 2
2
h1- h2+
g
v 2
2 0
D
=
g
v )
2 1
2
[
g
v 2
2 0
D
=
g
v ) (
2 1
2
0 [
1
1
H g
o
[ M Vұy lѭu lѭӧng qua lӛ bӏ ngұp là:
c
c.v
Z
Z
0
2.g.H
Hoһc: Q P.Z 2.g.H0 (6.6)
P : gӑi là hӋ sӕ lѭu lѭӧng cӫa lӛ bӏ ngұp, P M.H = 0,61
K͇t lu̵n: Công thӭc dòng chҧy ra khӓi lӛ khi chҧy tӵ do và chҧy ngұp giӕng nhau, chӍ khác nhau chӫ yӃu ӣ chӛ khi chҧy ngұp H là ÿӝ chênh cӝt nѭӟc thѭӧng lѭu và hҥ lѭu; còn khi chҧy tӵ do H là cӝt nѭӟc kӇ tӯ trӑng tâm cuҧ lӛ
Trang 6IV Dòng chҧy tӵ do әn ÿӏnh qua lӛ to thành mӓng
- Ӣ lӛ to, cӝt nѭӟc tҥi bӝ phұn trên và bӝ phұn dѭӟi cuҧ lӛ có trӏ sӕ khác nhau lӟn
- Ta chia mһt cҳt ѭӟt thành nhӳng dãi vi phân dh, dòng chҧy qua dҧi này xem nhѭ chҧy qua lӛ nhӓ Nhѭ vұy lӛ to là do nhiӅu lӛ nhӓ hӧp lҥi Ta nghiên cӭu trѭӡng hӧp lӛ to hình chӳ nhұt
Giҧ thiӃt hӋ sӕ lѭu lѭӧng qua dhub là P’ ta có:
) dh b (
h g
Lѭu lѭӧng qua lӛ to là:
01 2 02
2 3
2
2 02
01
H H g b
dh h g
b Q
H
H
P
Pc
³
(6.8)
Trongÿó P: HӋ sӕ lѭu lѭӧng cӫa lӛ to bҵng trӏ sӕ trung bình cӫa vô sӕ hӋ sӕ lѭu lѭӧng cӫa lӛ nhӓ P’
Gӑi H0 là cӝt nѭӟc tҥi trӑng tâm cӫa lӛ
¸¸
¹
·
¨¨
©
§
0 0
0 02
2
1
e H
e H H
¸¸
¹
·
¨¨
©
§
0 0
0 01
2
1
e H
e H
»
»
¼
º
«
«
¬
ª
¸¸
¹
·
¨¨
©
§
¸¸
¹
·
¨¨
©
§
P
2
0 2
0
2 0
2
1 2
1 2
3
2
H
e H
e H
g b Q TriӇn khai trong ngoһc theo nhӏ thӭc New ton:
»
»
»
»
»
¼
º
«
«
«
«
«
¬
ª
¸¸
¹
·
¨¨
©
§
u
u
u
¸¸
¹
·
¨¨
©
§
u
u
u
P
3 0
3 2
0 2
0
3 0
3 2
0 2
0 2
0
H 8
e 16
1 H 4
e 8
3 H 2
e 2
3 1
H 8
e 16
1 H 4
e 8
3 H 2
e 2
3 1 H g 2 b 3
2 Q
¼
º
«
¬
ª
¸¸
¹
·
¨¨
©
§ u
¸¸
¹
·
¨¨
©
§ u
0 0
2 0
64
1 2
3 2
3
2
) H
e ( H
e H
g b
Trang 7»
¼
º
«
«
¬
ª
¸¸
¹
·
¨¨
©
§
P
2
0 0
96
1 1 2
H
e H
g e b
»
»
¼
º
«
«
¬
ª
¸¸
¹
·
¨¨
©
§
Z
P
2
0 0
96
1 1 2
H
e H
g
Vì lѭӧng:
2
0
96
1
¸¸
¹
·
¨¨
©
§ H
e rҩt nhӓ nên bӓ qua
K͇t lu̵n: Công thӭc tính lѭu lѭӧng dòng chҧy qua lӛ to giӕng nhѭ lӛ nhӓ, nhѭng chӍ khác hӋ sӕ lѭu lѭӧng cӫa lӛ to lӟn hѫn lӛ nhӓ HӋ sӕ lѭu lѭӧng P ÿѭӧc cho ӣ bҧng tra
V Dòng chҧy không әn ÿӏnh qua lӛ nhӓ thành mӓng
- Khi dòng chҧy qua lӛ mà mӵc chҩt lӓng trong bình chӭa thay ÿәi theo thӡi gian, thì sinh ra dòng chҧy không әn ÿӏnh
- Ta chӍ nghiên cӭu trѭӡng hӧp ÿѫn giҧn, khi mӵc nѭӟc trong bình thay ÿәi chұm Trong thӡi gian ngҳn, ta có thӇ áp dөng công thӭc cӫa dòng chҧy әn ÿӏnh qua lӛ nhӓ thành mӓng
-Ta ÿi chia khoҧng thӡi gian tính toán T ra nhiӅu thӡi ÿoҥn dt nhӓ, ӭng vӟi mӛi thӡi ÿoҥn có cӝt nѭӟc tác dөng chҧy qua lә h0 coi nhѭ không ÿәi Ta có:
+ ThӇ tích chҧy vào bình : q.dt, lѭu lѭӧng chҧy vào bình
+ ThӇ tích chҧy ra khӓi bình : - Q.dt , Q lѭu lѭӧng chҧy ra khӓi bình
+ ThӇ tích tăng lên hoһc giҧm ÿi trong bình chӭa là: :.dh
Trongÿó: : : DiӋn tích mһt cҳt ngang cӫa bình
: const: vӟi bình hình trө
:zconst: vӟi bình khác hình trө (phӭc tҥp)
- Ta có hӋ thӭc: q.dtQ.dt :.dh
o
Q q
dh dt
:
Xét các tr˱ͥng hͫp:
1 Mӵc nѭӟc thѭӧng lѭu thay ÿәi, dòng chҧy tӵ do qua lӛ nhӓ (tháo cҥn bình chӭa)
- Xét trѭӡng hӧp q = 0 ÿӇ ÿѫn giҧn
- Cҫn tìm thӡi gian T1-2 ÿӇ mӵc nѭӟc thay ÿәi tӯ 1-1 ÿӃn vӏ trí 2-2
1
1
H 2
H 1
dh h
Trang 8H1
dh 2
1
H2
H2 ’h
v0
0
2.g.h
dh dt
Z P
:
³ PZ:
02
2 1
2
H
H g.h
dh T
- NӃu biӃt quy luұt cӫa : thì sӁ giҧi ÿѭӧc
- ĈӇ ÿѫn giҧn ta giҧ thiӃt: : = const, v0| 0 nên ho= h
1 2
2 1
2
2 2
2
1
H H g
h
dh g T
H
H
Z
P
: Z
P
:
- Khi tháo cҥn hoàn toàn (H2 = 0) thì:
g
H T
2
2 1
Z P
:
o
1
1 2
1
2
2 H g
H T
Z P
:
Vӟi :.H1: ThӇ tích chҩt lӓng chҧy ra khӓi bình chӭa
- Trong trѭӡng hӧp nӃu H1 không ÿәi sӁ tháo ÿѭӧc lѭu lѭӧng là:Q P.Z 2.g.H1 thì:
1
1
2.g.H
H Z
P
:
¾ Vұy: Thӡi gian cҫn thiӃt ÿӇ tháo cҥn bình chӭa (:H1) khi cӝt nѭӟc thay ÿәi bҵng hai lҫn thӡi gian ÿӇ tháo cҥn mӝt thӇ tích tѭѫng ӭng nhѭng dѭӟi tác dөng cӫa cӝt nѭӟc không ÿәi
2 Mӵc nѭӟc thѭӧng lѭu không ÿәi, hҥ lѭu thay ÿәi (làm ÿҫy bӇ chӭa).
Ta quan niӋm bình thӭ hai giӕng nhѭ
trѭӡng hӧp trên, có nghƭa:
- Lѭu lѭӧng ra: Q = 0, lѭu lѭӧng
dòng chҧy vào q:
H h
g
Mà:
q
dh
Doÿó:
) h H ( g
dh dt
Z
P
:
1
2
(6.13) Tích phân h tӯ H’2ÿӃn H2
1 1
1 1 1
2
1
2
2
2
2
2
2 '
2
2
2 2
2
H H H H g h
H
h H d g
h H
h H d g h
H g
dh T
H
H
H
H H
H
c
:
:
:
:
³
³
³
c c
Z P Z
P
Z P Z
P
NӃu, ban ÿҫu H2’ = 0, thì thӡi gian tháo ÿӇ mӵc nѭӟc bình thӭ hai dâng lên bҵng mӵc nѭӟc bình thӭ nhҩt, tӭc là H2’ = H1:
Trang 91 1
2
2 2
2
gH
H
g
H
T1-2
Z P
: Z
P
:
(6.14)
- Nhѭ vұy cùng ӣ ÿiӅu kiӋn H1 và : giӕng nhau, thӡi gian tháo cҥn và chӭa ÿҫy bình là giӕng nhau
VI Dòng chҧy qua vòi
1 Khái niӋm:
- Vòi là mӝt ÿoҥn ӕng ngҳn gҳn vào lӛ
thành mӓng có chiӅu dài l = (3y4)d, vӟi d:
ÿѭӡng kính lӛ
- Chҩt lӓng qua vòi co hҽp tҥi cӱa vào sau
ÿó mӣ rӝng ra & chҧy ÿҫy vòi
- Chӛ co hҽp có chân không nên có tác
dөng hút lѭu lѭӧng; vӟi chiӅu dài vòi l =
(3÷4).d, thì lѭu lѭӧng qua vòi lӟn hѫn qua lӛ
tѭѫng ӭng
- Có nhiӅu hình thӭc vòi: Vòi hình trө,
hình loe, gҳn trong, gҳn ngoài, vòi hình ÿѭӡng
dòng
2 Vòi hình trө tròn gҳn ngoài
2.1 Ta cҫn tìm công thӭc tính lѭu lѭӧng.
- ViӃt phѭѫng trình Becnoulli cho mһt cҳt 1-1 và 2-2, mһt chuҭn qua trөc vòi
w a
a
h g
v p g
v p
J
D
J
2
0 2
2 2 2
0
(6.15)
w
h g
v
2
2 2 0
Trongÿó:
hw bao gӗm:
+ Tәn thҩt qua lӛ:
g
vc 2
2 1
[
+ Tәn thҩt ÿӝt mӣ tӯ mһt cҳt co hҽp ÿӇ chҧy ÿҫy vòi:
g 2
v2 2
[
Vӟi
2
c
¹
·
¨¨
©
§
Z
Z [
+ Tәn thҩt dӑc ÿѭӡng:
g
v d
l 2
2
O Ĉәi vc theo v: nhӡ phѭѫng trình liên tөc: Zc.vc = Z.v
H Z
v v
c
Z
Z
Vұy:
g
v d
l
hw
2
2 1
»
»
¼
º
«
«
¬
ª
O
¸
¹
·
¨
©
§ H
H
H [
H
1 1
2 2
v c
l
v 0
h ck
g
v
2
2 0 D
c
c
Trang 10g
v d
l H
2
2 1 2 0
»
»
¼
º
«
«
¬
ª
O
¸
¹
·
¨
©
§ H
H
H
[
D Ĉһt:
d
l O
¸
¹
·
¨
©
§ H
H
H
[
D
2 1 2
2
1 1
(Vì dòng chҧy qua vòi tҥi cӱa ra không có co hҽp H = 1 nín M = P)
Trongÿó :P- HӋ sӕ lѭu lѭӧng chҧy qua vòi, vӟi vòi có chiӅu dăi l= (3÷4)d, thì P ~ 0,82
2.2 Nhұn xĩt:
a - Khi chҧy qua lӛ:
61 0 1
1
, và
lỗ q
P [
- Khi chҧy qua vòi trong trѭӡng hӧp nҫy:
82 0 1
1
2 2
1 2
, với
d l
P M P
O
¸
¹
·
¨
©
§ H
H
H
[
D M
Nhѭ vұy: HӋ sӕ lѭu lѭӧng chҧy qua vòi lӟn hѫn hӋ sӕ lѭu lѭӧng chҧy qua lӛ gҩp
34
1
61
0
82
0
,
,
,
lҫn
b Xem xĩt hiӋn tѭӧng chđn không trong vòi
- ViӃt phѭѫng trình Becnoulli cho mһt cҳt 1-1 vă c-c, vӟi mһt chuҭn qua trӑng tđm vòi:
C W C C C
g
v p g
v p
J
D
J
2 2
0
2
0
0
2 2
2
v g
v p
p p
ql C C C a C ck C
J
J
2 2
2 0 2 0
g
v H gH
H
v
v C
Thay văo trín ta ÿѭӧc:
0 2
2 2
2
2
v g
v
H [
H D
0 0 2 2 0
2
2
H H H
H
M [
H M
¹
·
¨¨
©
§
H
M [
2
H
Vӟi [ql = 0,06; H = 0,64 thì M = P = 0,82 Thay văo biӇu thӭc trín ta có:
0
75
hCck : cӝt nѭӟc chđn không tҥi mһt cҳt C-C (6.18)
Trang 11ĈӇ thҩy rõ thím tâc dөng cӫa chđn không trong vòi ÿӕi vӟi lѭu lѭӧng cӫa vòi ta viӃt:
C W C C C
g
v p g
v p
J
D
J
2 2
0
2
0 2
0 0
2 2
2
p p g
v g
ck C
a C ql C
J
[
D
2
1
H h g
ql
[
D
ck C
ck C
C
So vӟi qua lӛ: Qlỗ P.Z 2gH0 Qvòi P.Z 2gH0hck
Nhұn xĩt: Tӯ (6.18) ta thҩy: H0 căng lӟn thì hck căng lӟn
Tӯ (6.19) ta thҩy: hck căng lӟn thì Qvòi căng lӟn
Tuy vұy, nӃu hck mă tăng quâ, không khí bín ngoăi theo cӱa ra chui văo phâ vӥ chđn không, do ÿó phҧi có hck nҵm trong giӟi hҥn cho phĩp, trong ÿiӅu kiӋn bình thѭӡng, ta lҩy [hck] = 7 m
m ,
,
75
0
0
7
Vұy, ÿiӅu kiӋn ÿӇ vòi hình trө gҳn ngoăi lăm viӋc әn ÿӏnh lă:
x l = (3y4)d
x H0d 9 m hoһc hckd 7 m
Dùng vòi hình trө gҳn ngoăi có thӇ tăng lѭu lѭӧng ÿѭӧc 32% so vӟi dùng lӛ nhӓ thănh mӓng
Trang 12B - DÒNG TIA
VII Phân loҥi, tính chҩt dòng tia
1 Ĉӏnh nghƭa
- Dòng tia là dòng chҧy không bӏ bao bӑc bӣi thành rҳn Có hai loҥi dòng tia: + Dòng tia ngұp là dòng tia chuyӇn ÿӝng trong môi trѭӡng chҩt lӓng cùng loҥi hoһc trong không gian ÿҫy nѭӟc Ví dө: Cӕng tháo nѭӟc thành phӕ vào sông
+Dòng tia không ngұp: Chҩt lӓng phun vào không khí
Ví dө: Vòi chӳa cháy, vòi tѭӟi phun
+ Dòng tia ngұp ÿã ÿѭӧc nghiên cӭu tѭѫng ÿӕi nhiӅu so vӟi dòng tia không ngұp
- Trҥng thái chҧy trong dòng tia có thӇ là chҧy tҫng hoһc chҧy rӕi, nhѭng thѭӡng gһp trong thӵc tӃ là trҥng thái chҧy rӕi Dѭӟi ÿây ta chӍ ÿӅ cұp ÿӃn trҥng thái chҧy rӕi cӫa dòng tia
2 Dòng tia ngұp
C̭u t̩o cͯa dòng tia, da vào s phân tích ÿ͛ phân b͙ l˱u t͙c trên nhͷng m̿t c̷t
ngang cͯa dòng tia, bao g͛m:
a Khu lõi hoһc khu tӕc ÿӝ không ÿәi: Bҳt ÿҫu tӯ mһt cҳt ÿҫu ӣ miӋng vòi, nhӓ dҫn và kӃt thúc ӣ mһt cҳt tҥi ÿó chӍ có tӕc ÿӝ ӣ trөc dòng tia bҵng tӕc ÿӝ u0 Thí nghiӋm chӭng minh rҵng ÿѭӡng giӟi hҥn này là mӝt ÿѭӡng thҷng
b Khu tҫng biên giӟi: Là khu có tӕc ÿӝ liên tөc biӃn ÿәi cho tӟi nѫi có tӕc ÿӝ bҵng không.Ĉѭӡng nӕi các ÿiӇm tӕc ÿӝ bҵng không là ÿѭӡng phân chia
Theo chi͉u dài cͯa dòng tia, có th͋ chia làm hai ÿo̩n:
a Ĉoҥn ÿҫu: Tӯ mһt cҳt ÿҫu ÿӃn mһt cҳt quá ÿӝ tӭc là mһt cҳt kӃt thúc khu lõi Trong phҥm vi hai ÿѭӡng phân chia ӣ ÿoҥn ÿҫu có hai khu: khu lõi và khu tҫng biên giӟi
b.Ĉoҥn cѫ bҧn: Tӯ mһt cҳt quá ÿӝ trӣ ÿi trong phҥm vi hai ÿѭӡng phân chia; ÿoҥn cѫ bҧn chӍ bao gӗm tҫng biên giӟi; tӕc ÿӝ tҥi trөc dòng tia giҧm dҫn
Giao ÿi͋m cͯa hai ÿ˱ͥng phân chia g͕i là ÿi͋m cc cͯa dòng tia
Trang 13a VӅ sӵ biӃn thiên cӫa tӕc ÿӝ trên trөc dòng tia Trong ÿoҥn ÿҫu, tӕc ÿӝ giӳ không ÿәi và bҵng tӕc ÿӝ u0 tҥi mһt cҳt ÿҫu Trong ÿoҥn cѫ bҧn, thí nghiӋm chӭng tӓ rҵng tӕc ÿӝ u1
trên trөc dòng tia ӣ cách mһt cҳt ÿҫu l biӃn thiên theo quy luұt hyperbol:
Trongÿó: d0 : Ĉѭӡng kính cӫa dòng tia ӣ mһt cҳt ÿҫu
M : HӋ sӕ thӵc nghiӋm
l : Khoҧng cách tӯ ÿiӇm xác ÿӏnh ÿӃn miӋng vòi
Ta thҩy: l càng dài, u1càng giҧm ÿӃn mӝt lúc nào ÿó u1không có tác dөng và sӁ bҵng tӕc
ÿӝ môi trѭӡng
Trong nhӳng dòng tia phun vào không gian ÿҫy không khí:
- Theo nhӳng thí nghiӋm cӫa Milovit: M = 6
- Theo thí nghiӋm cӫa Abѫramôvit:
Trong nhӳng dòng tia phun vào không gian ÿҫy nѭӟc:
- Theo thí nghiӋm cӫa Cônôva lӕp
b Trong trѭӡng hӧp phân bӕ ÿӅu tӕc ÿӝ ӣ mһt cҳt ÿҫu, áp lӵc trong dòng tia bҵng áp lӵc cӫa môi trѭӡng xung quanh Ĉó là mӝt kӃt luұn quan trӑng làm cѫ sӣ nghiên cӭu cho nhiӅu vҩn ÿӅ vӅ dòng tia chҧy ngұp
3 Dòng tia không ngұp
a KӃt cҩu: Xét mӝt dòng tia nѭӟc không ngұp hay còn gӑi là dòng tia tӵ do, tӯ ӕng hình
tròn phun vào không khí, ta có thӇ chia dòng ra làm 3 phҫn:
-Phҫn liên kӃt chһt: Trong phҫn này, dòng tia còn giӳ nguyên hình trө: các hҥt chҩt lӓng vүn liên kӃt chһt nên chҩt lӓng vүn liên tөc, không có nhӳng khu bӏ không khí lүn vào
-Phҫn rӡi rҥc: Trong phҫn này, sӵ liên tөc cӫa chҩt lӓng bӏ phá hoҥi, dòng tia mӣ rӝng, bҳt ÿҫu có nhӳng hҥt nѭӟc lӟn
-Phҫn mѭa bөi: Trong phҫn này, dòng tia gӗm nhӳng hҥt nѭӟc rҩt nhӓ, riêng biӋt
phun ra thҷng ÿӭng, dӵa vào kӃt quҧ thí nghiӋm:
Ĉӝ cao cӫa ÿoҥn liên kӃt chһt Hk tính tӯ miӋng vòi phun, tính theo:
... (ÿӕi vӟi nѭӟc) có nhӳng trӏ sӕ sau ÿây: [ = 0,05 y 0, 06; H = 0 ,63 y 0 ,64 ; M = 0,97 y 0,98,P = 0 ,60 y 0 ,62 , trung bình lҩy P = 0 ,61 Ngѭӡi ta thѭӡng dùng lӛ nhӓ, thành mӓng ÿӇ
ÿo...
2.g.H
Hoһc: Q P.Z 2.g.H0 (6. 6)
P : gӑi hӋ sӕ lѭu lѭӧng cӫa lӛ bӏ ngұp, P M.H = 0 ,61
K͇t lu̵n: Cơng thӭc dịng chҧy khӓi lӛ chҧy tӵ chҧy ngұp giӕng... = 0, 06; H = 0 ,64 M = P = 0,82 Thay văo biӇu thӭc trín ta có:
0
75
hCck : cӝt nѭӟc chđn không tҥi mһt cҳt C-C (6. 18)