On exponential stability of bidirectional associative memoryneural networks with time-varying delays a Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, Kyongsan
Trang 1On exponential stability of bidirectional associative memory
neural networks with time-varying delays
a Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, Kyongsan 712-749, Republic of Korea
b Platform Verification Division, BcN Business Unit, KT Co Ltd., Daejeon, Republic of Korea
c
School of Electrical and Computer Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea
Accepted 19 April 2007
Abstract
For bidirectional associate memory neural networks with time-varying delays, the problems of determining the expo-nential stability and estimating the expoexpo-nential convergence rate are investigated by employing the Lyapunov func-tional method and linear matrix inequality (LMI) technique A novel criterion for the stability, which give information on the delay-dependent property, is derived A numerical example is given to demonstrate the effectiveness
of the obtained results
Ó 2007 Elsevier Ltd All rights reserved
1 Introduction
As an extension of the unidirectional autoassociator of Hopfield[1], Kosko[2]has proposed a series of neural net-works related to bidirectional associative memory (BAM) This class of netnet-works has good application in the area of pattern recognition and artificial intelligence Therefore, the BAM neural networks has been one of the most interesting research topics and has attracted the attention of many researchers For instance, refer to Refs.[3–10] Also, time delay will inevitably occur in the communication and response of neurons owing to the unavoidable finite switching speed of amplifiers in the electronic implementation of analog neural networks, so it is more in accordance with this fact to study the BAM neural networks with time delays The existence of time delay is frequently a source of oscillation and insta-bility[11–19] Therefore, the study of the stability and convergent dynamics of BAM with delays has raised considerable interest in recent years, see for example[20–22]and the references cited therein
In this paper, the problem of exponential stability for BAM with time-varying delays is considered When it comes to design a neural network, one concerns not only on the stability of the system but also on the convergence rate, that is to say, one usually desires a fast response in the network, so it is important to determine the exponential stability and to estimate the exponential convergence rate[23–28] Based on the Lyapunov theory and linear matrix inequality frame-work, a novel less conservative criterion is given in terms of LMI The advantage of the proposed approach is that
0960-0779/$ - see front matter Ó 2007 Elsevier Ltd All rights reserved.
doi:10.1016/j.chaos.2007.05.003
* Corresponding author.
E-mail address: jessie@ynu.ac.kr (J.H Park).
Chaos, Solitons and Fractals xxx (2007) xxx–xxx
www.elsevier.com/locate/chaos
Trang 2resulting stability criterion can be performed efficiently via existing numerical convex optimization algorithms such as the interior-point algorithms for solving the linear matrix inequality inequalities[30]
The rest of this paper is organized as follows: in Section2, we formulate the problem and state the well-known facts and lemmas which would be used later; in Section3, a new stability criterion for exponential stability of BAM with time-varying delays will be established; in Section4, some conclusions are drawn
Notations: Throughout the paper, Rndenotes the n dimensional Euclidean space, and Rnmis the set of all n m real matrices I denotes the identity matrix with appropriate dimensions q denotes the elements below the main diagonal of
a symmetric block matrix diagf g denotes the diagonal matrix For symmetric matrices X and Y, the notation
X > Y(respectively, X P Y ) means that the matrix X–Y is positive definite, (respectively, nonnegative) kMðÞ and
kmðÞ denote the largest and smallest eigenvalue of given square matrix, respectively
2 Problem statement
Consider the following BAM neural networks with time-varying delays:
_uiðtÞ ¼ aiuiðtÞ þXm
j¼1
wjigjðvjðt sðtÞÞÞ þ Ii; i¼ 1; 2; ; n;
_vjðtÞ ¼ bjvjðtÞ þXn
i¼1
vijiðuiðt hðtÞÞÞ þ Jj; j¼ 1; 2; ; m;
ð1Þ
in which u¼ ðu1; u2; ; unÞT2 Rnand v¼ ðv1; v2; ; vmÞT2 Rmare the activations of the ith neurons and the jth neu-rons, respectively, wjiand vijare the connection weights at the time t, Iiand Jjdenote the external inputs, sðtÞ > 0 and hðtÞ > 0 are positive time-varying delays which correspond to the finite speed of axonal signal transmission satisfying sðtÞ < s,sðtÞ 6 s_ d<1 and hðtÞ < h,hðtÞ 6 h_ d <1, respectively, sðtÞ¼ maxfh; sg, and ai>0; bj>0
In this paper, it is assumed that the activate functions giand gi possess the following properties:
(A1) giand gi are nondecreasing and bounded on R; i ¼ 1; 2; ; maxfm; ng
(A2) There exist real numbers k1i>0 and k2i>0 such that
0 6giðn1Þ giðn2Þ
n1 n2 6k1i; i¼ 1; 2; ; m;
0 6iðn1Þ giðn2Þ
n1 n2 6k2i; i¼ 1; 2; ; n:
ð2Þ
It is clear that under the assumptions (A1) and (A2), system (1) has at least one equilibrium Assume that
u¼ ðu
1; u2; ; unÞTand v¼ ðv
1; v2; ; vmÞTare the equilibrium point of the system, then we will shift the equilibrium points to the origin by the transformation xiðtÞ ¼ uiðtÞ u
i, yjðtÞ ¼ vjðtÞ v
j,fiðxiðtÞÞ ¼ giðuiðtÞÞ giðu
iÞ, and
fjðyjðtÞÞ ¼ gjðvjðtÞÞ gjðv
jÞ Then, the transformed system is as follows:
_xiðtÞ ¼ aixiðtÞ þXm
j¼1
wjifjðyjðt sðtÞÞÞ; i¼ 1; 2; ; n;
_yjðtÞ ¼ bjyjðtÞ þXn
i¼1
vijf
iðxiðt hðtÞÞÞ; j¼ 1; 2; ; m;
xiðsÞ ¼ /iðsÞ; yjðsÞ ¼ wjðsÞ; s2 ½s;0; i ¼ 1; 2; ; n; j ¼ 1; 2; ; m;
ð3Þ
where the activate functions fiand fi satisfy the following properties:
(H1) fiand fiare bounded on R; i ¼ 1; 2; ; maxfm; ng,
(H2) There exist real numbers k1i>0 and k2i>0 such that
0 6fiðn1Þ fiðn2Þ
n1 n2
6k1i; i¼ 1; 2; ; m;
0 6fiðn1Þ fiðn2Þ
n1 n2
6k2i; i¼ 1; 2; ; n;
ð4Þ
(H3) fið0Þ ¼ 0; fið0Þ ¼ 0; 8i
For convenience, we can rewrite Eq.(3)in the form
Trang 3_xðtÞ ¼ AxðtÞ þ Wf ðyðt sðtÞÞÞ;
_yðtÞ ¼ ByðtÞ þ V fðxðt hðtÞÞÞ; ð5Þ where xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; ; xnðtÞÞT; yðtÞ ¼ ðy1ðtÞ; y2ðtÞ; ; ymðtÞÞT, A¼ diagða1; a2; ; anÞ, B ¼ diagðb1; b2; ; bmÞ,
W ¼ ðwijÞmn, V ¼ ðvijÞnm, f ¼ ðf1; f2; ; fmÞT
, and f¼ ðf1; f2; ; fnÞT
The following facts, definition, and lemmas will be used for deriving main result
Fact 1 (Schur complement) Given constant symmetric matrices R1;R2;R3 where R1¼ RT
1 and 0 < R2¼ RT
2, then
R1þ RT
3R12 R3<0 if and only if
R1 RT
3
R3 R2
" #
<0; or R2 R3
RT
<0:
Fact 2
For any z; y2 Rnm, and any positive definite matrix X 2 Rnn, the following inequality:
2zTy 6 zTX1zþ yTXy
holds
Definition 1
For system defined by(5),if there exist the positive constants k and l > 1 such that
kxðtÞk þ kyðtÞk 6 lekt sup
s 6 h60
kxðhÞk þ sup
s 6 h60
kyðhÞk
8t > 0;
then, the trivial solution of the system(5)is exponentially stable where k is called the convergence rate (or degree) of exponential stability
Lemma 1 [29]Suppose that(2)holds, then
Z u
v
½giðsÞ giðvÞ ds 6 ½u v½giðuÞ giðvÞ; i¼ 1; 2; ; n:
Lemma 2 [32] For any constant matrix R2 Rnn, R¼ RT>0, scalar c > 0, vector function x :½0; c ! Rnsuch that the integrations concerned are well defined, then
Z c
0
xðsÞ ds
T
R
Z c 0
xðsÞ ds
6c
Z c 0
3 Main result
In this section, we present a stability criterion for exponential stability of system(1)using the Lyapunov stability theory and linear matrix inequality approach
Now the following theorem gives a new criterion for the stability of system(1)
Theorem 1 For given positive matrices K1¼ diagfk11; k12; ; k1ng, K2¼ diagfk21; k22; ; k2ng, positive scalars h and s, the equilibrium point of system(1) is globally exponentially stable with convergence rate k if there exist two positive diagonal matrices D¼ diagfd1; d2; ; dng and E ¼ diagfe1; e2; ; eng, positive definite matrices P, Q, R1, R2, Z1, Z2,
L1, L2and any matrices Niði ¼ 1; 2; ; 10Þ satisfying the following LMI:
Trang 4U1þ N1Aþ ANT
5
I R1 2DAK1
I I I N4þ NT
5
I I I I h1e2k hL1
2
6
6
6
6
6
6
6
6
6
4
VTQ VTNT
10
U3þ N6Bþ BNT
NT7 BTNT8 N6þ BT
NT9 BTNT10
I R2 2EBK1
9þ sL2 NT
10
3 7 7 7 7 7 7 7 7 7 5
<0;
ð7Þ
where
U1¼ 2kP 2PA þ Z1;
U2¼ e2k hð1 hdÞR1 e2k hð1 hdÞK1
2 Z1K12 ;
U3¼ 2kQ 2QB þ Z2;
1 Z2K11 :
Proof Consider a Lyapunov function candidate as
where
V1¼ e2ktxTðtÞPxðtÞ þ e2ktyTðtÞQyðtÞ;
V2¼ 2Xn
i¼1
die2kt
Z x i ðtÞ 0
fiðsÞ ds þ 2Xm
i¼1
eie2kt
Z yiðtÞ 0
fiðsÞ ds;
V3¼
Z t
thðtÞ
e2ksfTðxðsÞÞR1fðxðsÞÞ ds þ
Z t tsðtÞ
e2ksfTðyðsÞÞR2fðyðsÞÞ ds;
V4¼
Z t
thðtÞ
e2ksxTðsÞZ1xðsÞ ds þ
Z t tsðtÞ
e2ksyTðsÞZ2yðsÞ ds;
V5¼
Z t
t h
Z t
s
e2ku_xTðuÞL1_xðuÞ du ds þ
Z t ts
Z t s
e2ku_yTðuÞL2_yðuÞ du ds:
Now, let us calculate the time derivative of Vialong the trajectory of(5) First the derivative of V1is
_
V1¼ e2ktf2kxTðtÞPxðtÞ þ 2xTðtÞP _xðtÞ þ 2kyTðtÞQyðtÞ þ 2yTðtÞQ_yðtÞg
¼ e2ktf2kxTðtÞPxðtÞ þ 2xTðtÞP ðAxðtÞ þ Wf ðyðt sðtÞÞÞÞ þ 2kyTðtÞQyðtÞ
þ 2yTðtÞQðByðtÞ þ V fðxðt hðtÞÞÞÞg: ð9Þ Second, we get the bound of _V2 as
Trang 5V2¼ 2Xn
i¼1
die2ktð2k
Z x i ðtÞ 0
fiðsÞ ds þ fiðxiðtÞÞ_xiðtÞÞ þ 2Xm
i¼1
eie2ktð2k
Z yiðtÞ 0
fiðsÞ ds þ fiðyiðtÞÞ_yiðtÞÞ
¼Xn
i¼1
4kdie2kt
Z x i ðtÞ 0
fiðsÞ ds þ 2ektfTðxðtÞÞD_xðtÞ þXm
i¼1
4keie2kt
Z yiðtÞ 0
fiðsÞ ds þ 2ektfTðyðtÞÞE _yðtÞ
6e2ktf4kfTðxðtÞÞDxðtÞ 2fTðxðtÞÞDAxðtÞ þ 2fTðxðtÞÞDWf ðyðt sðtÞÞÞg þ e2ktf4kfTðyðtÞÞEyðtÞ
2fTðyðtÞÞEByðtÞ þ 2fTðyðtÞÞEV fðxðt hðtÞÞÞg ð10Þ whereLemma 1is utilized
Third, the bound of _V3is as follows:
_
V36e2ktfTðxðtÞÞR1fðxðtÞÞ e2kðt hÞð1 hdÞfTðxðt hðtÞÞÞR1fðxðt hðtÞÞÞ þ e2kt
fTðyðtÞÞR2fðyðtÞÞ
Next, we obtain the followings:
_
V46e2ktxTðtÞZ1xðtÞ e2kðt hÞð1 hdÞxTðt hðtÞÞZ1xðt hðtÞÞ þ e2kt
yTðtÞZ2yðtÞ e2kðtsÞð1 sdÞyT
Finally, we have
_
V5¼ e2kth_xT
ðtÞL1_xðtÞ
Z t t h
e2ks_xTðsÞL1_xðsÞ ds þ e2kt
s _yT
ðtÞL2_yðtÞ
Z t ts
e2ks_yTðsÞL2_yðsÞ ds
6e2kth_xTðtÞL1_xðtÞ e2kðt hÞZ t
t h
_xTðsÞL1_xðsÞ ds þ e2kt
s _yTðtÞL2_yðtÞ e2kðtsÞZ t
ts
_yTðsÞL2_yðsÞ ds
6e2kt h_xTðtÞL1_xðtÞ e2k h1 Z t
t h
_xðsÞ ds
ÞTL1
Z t t h
_xðsÞ ds
þ s_yTðtÞL2_yðtÞ
e2kss1
Z t ts
_yðsÞ ds
T
L2
Z t ts
_yðsÞ ds
6e2kt h_xTðtÞL1_xðtÞ e2k h1 Z t
thðtÞ
_xðsÞ ds
!T
L1
Z t thðtÞ
_xðsÞ ds
!
þ s_yTðtÞL2_yðtÞ
8
<
:
e2kss1
Z t tsðtÞ
_yðsÞ ds
!T
L2
Z t tsðtÞ
_yðsÞ ds
!9=
whereLemma 2is used in the second inequality
Thus, it follows that:
_
V 6 e2kt
(
2kxTðtÞPxðtÞ þ 2xTðtÞP ðAxðtÞ þ Wf ðyðt sðtÞÞÞÞ þ 2kyTðtÞQyðtÞ þ 2yTðtÞQðByðtÞ þ V fðxðt hðtÞÞÞÞ þ4kfTðxðtÞÞDxðtÞ 2fTðxðtÞÞDAxðtÞ þ 2fTðxðtÞÞDWf ðyðt sðtÞÞ þ 4kfTðyðtÞÞEyðtÞ 2fTðyðtÞÞEByðtÞ
þ2fTðyðtÞÞEV fðxðt hðtÞÞ þ fTðxðtÞÞR1fðxðtÞÞ e2khð1 hdÞfTðxðt hðtÞÞÞR1fðxðt hðtÞÞÞ
þfTðyðtÞÞR2fðyðtÞÞ e2ksð1 sdÞfTðyðt sðtÞÞÞR2fðyðt sðtÞÞÞ þ xTðtÞZ1xðtÞ
e2k hð1 hdÞxTðt hðtÞÞZ1xðt hðtÞÞ þ yTðtÞZ2yðtÞ e2ksð1 sdÞyTðt sðtÞÞZ2yðt sðtÞÞ þ h_xTðtÞL1_xðtÞ
e2k h1
Z t thðtÞ
_xðsÞds
L1
Z t thðtÞ
_xðsÞds
!!
þs_yT
ðtÞL2_yðtÞ e2kss1
Z t tsðtÞ
_yðsÞds
!T
L2
Z t tsðtÞ
_yðsÞds
!9=
;: ð14Þ Here note that
Trang 62fTðxðtÞÞDAxðtÞ 6 2fTðxðtÞÞDAK1
2 fðxðtÞÞ;
2fTðyðtÞÞEByðtÞ 6 2fTðyðtÞÞEBK1
1 fðyðtÞÞ;
e2k hxTðt hðtÞÞZ1xðt hðtÞÞ 6 e2k hfTðxðt hðtÞÞÞK1
2 Z1K12 fðxðt hðtÞÞÞ;
1 Z2K11 fðyðt sðtÞÞÞ;
ð15Þ
where the property H2 andFact 2are used to derive the inequalities
For any appropriate dimensional matrices Niði ¼ 1; 2; ; 10Þ, the following equations hold:
2
"
xTðtÞN1þ fTðxðtÞÞN2þ fTðxðt hðtÞÞÞN3þ _xTðtÞN4:
þ
Z t
thðtÞ
_xðsÞ dsÞ
!T
N5
3 5½_xðtÞ þ AxðtÞ Wf ðyðt sðtÞÞÞ ¼ 0;
2½yTðtÞN6þ fTðyðtÞÞN7þ fTðyðt sðtÞÞÞN8þ _yTðtÞN9
þ
Z t
tsðtÞ
_yðsÞ dsÞ
!T
N10
#
½ _yðtÞ þ ByðtÞ V fðxðt hðtÞÞÞ ¼ 0:
ð16Þ
Substituting Eq.(15)into Eq.(14)and utilizing the relationship(16)gives that
_
where
zðtÞ ¼ xTðtÞ fTðxðtÞÞ fTðxðt hðtÞÞÞ _xTðtÞ
Z t thðtÞ
_xðsÞdsÞ
!T
yTðtÞ fTðyðtÞÞ fTðyðt sðtÞÞÞ _yTðtÞ
Z t tsðtÞ
_yðsÞdsÞ
!T
2
4
3 5
T
:
Since the matrix P given inTheorem 1is the negative definite matrix, we have _V 60, it follows that V 6 Vð0Þ Then we have the followings:
Vð0Þ ¼ xTð0ÞPxð0Þ þ 2Xn
i¼1
di
Z x i ð0Þ 0
fiðsÞ ds þ
Z 0
hð0Þ
e2ksfTðxðsÞÞR1fðxðsÞÞ ds þ
Z 0
hð0Þ
e2ksxTðsÞZ1xðsÞ ds
þ yTð0ÞQyð0Þ þ 2Xm
i¼1
ei
Z y i ð0Þ 0
fiðsÞ ds þ
Z 0
sð0Þ
e2ksfTðyðsÞÞR2fðyðsÞÞ ds þ
Z 0
sð0Þ
e2ksyTðsÞZ2yðsÞ ds
þ
Z 0
h
Z 0 s
e2ku_xTðuÞL1_xðuÞ du ds þ
Z 0
s
Z 0 s
e2ku_yTðuÞL2_yðuÞ du ds: ð18Þ Also, we further get the bound of Vð0Þ as follows:
Vð0Þ 6 kMðP Þk/k2þ 2dMk1Mk/k2þ ðkMðR1Þk2
Z 0
h
e2ksxTðsÞxðsÞ ds þ kMðQÞkwk2þ 2eMk2Mkwk2
þ ðkMðR2Þk2
Z 0
s
e2ksyTðsÞyðsÞ ds þ kMðL1Þ
Z 0
h
Z 0 s
_xTðuÞ_xðuÞ du ds þ kMðL2Þ
Z 0
s
Z 0
s
where dM ¼ maxðdiÞ, eM¼ maxðeiÞ, k1M¼ maxðk1iÞ, k2M¼ maxðk2iÞ, k/k ¼ suph6h60kxðhÞk, and kwk ¼ sups6h60 kyðhÞk
It follows fromFact 2that:
_xTðsÞ_xðsÞ 6 2xTðsÞATAxðsÞ þ 2fTðyðs sðsÞÞÞWTWfðyðs sðsÞÞÞ
62kMðATAÞk/k2þ 2kMðWTWÞkMðK2Þkwk2
_yTðsÞ _yðsÞ 6 2yTðsÞBTByðsÞ þ 2fTðxðs hðsÞÞÞVT
V fðxðs hðsÞÞÞ
62kMðBTBÞkwk2þ 2kMðVT
VÞkMðK2Þk/k2:
ð20Þ
Trang 7From the relationship(20)and simple calculation, we further have
Vð0Þ 6 kMðP Þk/k2þ 2dMk1Mk/k2þ ðkMðR1Þk2
1Mþ kMðZ1ÞÞk/k21 e
2k h
2k þ kMðQÞkwk2þ 2eMk2Mkwk2
þ ðkMðR2Þk2
2Mþ kMðZ2ÞÞkwk21 e
2ks
2k þ h2kMðL1Þð2kMðATAÞk/k2þ 2kMðWT
WÞkMðK2Þkwk2Þ
þ s2kMðL2Þð2kMðBTBÞkwk2þ 2kMðVTVÞkMðK2Þ2Þk/k2Þ
¼ fkMðP Þ þ 2dMk1Mþ ðkMðR1Þk2
2k h
2k þ 2h2kMðL1ÞkMðATAÞ
þ 2s2kMðL2ÞkMðVTVÞkMðK2Þ2Þgk/k2þ kMðQÞ þ 2eMk2Mþ ðkMðR2Þk2
2ks
2k
þ2h2kMðL1ÞkMðWTWÞkMðK2Þ þ 2s2kMðL2ÞkMðBTBÞ
kwk2 c1k/k2þ c2kwk2
Furthermore, we have
V P e2ktðkmðP ÞkxðtÞk2þ kmðQÞkyðtÞk2Þ:
Then we easily obtain
kxðtÞk þ kyðtÞk 6 ffiffiffi
2
p ðkxðtÞk2þ kyðtÞk2Þ1=26lðk/k2þ kwk2Þ1=2ekt6lðk/k þ kwkÞekt
for all t P 0, where l P 1 is a constant and
k/k ¼ sup
s 6 h60
kxðhÞk; kwk ¼ sup
s 6 h60
kyðhÞk:
Thus byDefinition 1, system(5)is exponentially stable and has the exponential convergence rate k This completes the proof h
Remark 1 The criterion given inTheorem 1is delay-dependent It is well known that the delay-dependent criteria are generally less conservative than delay-independent criteria when the delay is small
Remark 2 The solutions ofTheorem 1can be obtained by solving the eigenvalue problem with respect to solution variables, which is a convex optimization problem[30] In this paper, we utilize Matlab’s LMI Toolbox[31]which implements interior-point algorithm This algorithm is significantly faster than classical convex optimization algo-rithms[30]
Example 1 Consider the following BAM neural networks (5) with fiðxÞ ¼1
2ðjxiþ 1j jxi 1jÞ, fjðyÞ ¼1
2
ðjyjþ 1j jyj 1jÞ, s = 1, h ¼ 0:5 and
A¼ I; B¼ 2I; W ¼
0:05 0:25 0:05 0:1 0:05 0:15 0:15 0:15 0:05
2 6
3 7 5; V ¼
0:75 0:75 0:95
0 0:5 0:15 0:15 0:15 0:05
2 6
3 7
From the functions fiðxÞ and fjðyÞ, we can easily obtain K1¼ K2¼ I When the exponential convergence rate is taken
as k = 0.4, the criteria given in[27,28,26]cannot determine that system(22)is exponentially stable However when our criterion given inTheorem 1is applied to the system(22), our maximum allowable convergence rate for guaranteeing exponential stability of the system(22)is k = 0.57 Thus our result is less conservative than those of the existing works
[26–28] When the time-varying delays are considered for the system(22)with hðtÞ 6 1 and sðtÞ 6 0:5, the maximum allowable convergence rate is summarized inTable 1
Table 1
Convergence rate k
Maximum allowable convergence rate k 0.52 0.47 0.39 0.21
Trang 84 Concluding remarks
A novel criterion for exponential stability of BAM neural networks with time-varying delays has been presented by combining the Lyapunov functional method with LMI framework The criterion is delay-dependent and expressed by LMI Throughout a numerical example, it is shown that our criterion is less conservative than those of existing results
References
[1] Hopfield J Neuron with graded response have collective computational properties like those of two-state neurons Proc Natl Acad Sci USA 1984;81:3088–92.
[2] Kosko B Bidirectional associative memories IEEE Trans Syst Man Cybernet 1988;18:49–60.
[3] Gopalsamy K, He XZ Delay-independent stability in bidirectional associative memory networks IEEE Trans Neural Networks 1994;5:998–1002.
[4] Cao J, Wang L Periodic oscillatory solution of bidirectional associative memory networks Phys Rev E 2000;61:1825–8 [5] Guo SJ, Huang LH, Dai BX, Zhang ZZ Global existence of periodic solutions of BAM neural networks with variable coefficients Phys Lett A 2003;317:97–106.
[6] Cao J Global asymptotic stability of delayed bi-directional associative memory neural networks Appl Math Comput 2003;142:333–9.
[7] Zhao H Global stability of bidirectional associative memory neural networks with distributed delays Phys Lett A 2002;297:182–90.
[8] Chen A, Huang L, Cao J Existence and stability of almost periodic solution for BAM neural networks with delays Appl Math Comput 2003;137:177–93.
[9] Liang J, Cao J Exponential stability of continuous-time and discrete-time bidirectional associative memory networks with delays Chaos, Solitons & Fractals 2004;22:773–85.
[10] Huang L, Huang C, Liu B Dynamics of a class of cellular neural networks with time-varying delays Phys Lett A 2005;345:330–4 [11] Park JH Delay-dependent criterion for guaranteed cost control of neutral delay systems J Optim Theory Appl 2005;124:491–502 [12] Hale J, Verduyn Lunel SM Introduction to functional differential equations New York: Springer-Verlag; 1993.
[13] Park JH LMI optimization approach to asymptotic stability of certain neutral delay differential equation with time-varying coefficients Appl Math Comput 2005;160:335–61.
[14] Park JH Robust stabilization for dynamic systems with multiple time-varying delays and nonlinear uncertainties J Optim Theory Appl 2001;108:155–74.
[15] Kwon OM, Park JH Robust stabilization of uncertain systems with delays in control input: a matrix inequality approach Appl Math Comput 2006;172(2):1070–80.
[16] Park JH, Kwon O On guaranteed cost control of neutral systems by retarded integral state feedback Appl Math Comput 2005;165:393–404.
[17] Park JH Stability for a competitive Lotka–Volterra system with delays: LMI optimization approach Appl Math Lett 2005;18:689–94.
[18] Park JH, Kwon O On new stability criterion for delay-differential systems of neutral type Appl Math Comput 2005;162:627–37 [19] Park JH Robust non-fragile control for uncertain discrete-delay large-scale systems with a class of controller gain variations Appl Math Comput 2004;149:147–64.
[20] Cao J, Liang J, Lam J Exponential stability of high-order bidirectional associative memory neural networks with time delay Physica D 2004;199:425–36.
[21] Park JH A novel criterion for global asymptotic stability of BAM neural networks with time delays Chaos, Solitons & Fractals 2006;29:446–53.
[22] Liao X, Chen G, Sanchez E Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach Neural Networks 2002;15:855–66.
[23] Yucel E, Arik S New exponential stability results for delayed neural networks with time varying delays Physica D 2004;191:314–22.
[24] Li Y Global exponential stability of BAM neural networks with delays and impulses Chaos, Solitons & Fractals 2005;24:279–85.
[25] Huang X, Cao J, Huang DS LMI-based approach for delay-dependent exponential stability analysis of BAM neural networks Chaos, Solitons & Fractals 2005;24:885–98.
[26] Huang X, Cao J, Huang D LMI-based approach for delay-dependent exponential stability analysis of BAM neural networks Chaos, Solitions & Fractals 2005;24:885–98.
[27] Cao J, Dong M Exponential stability of delayed bidirectional associative memory networks Appl Math Comput 2003;135:105–12.
[28] Cao J, Wang L Exponential stability and periodic oscillatory solution in BAM networks with delay IEEE Trans Neural Networks 2002;13:457–63.
[29] Zhang Q, Wei X, Xu J Delay-dependent exponential stability of cellular neural networks with time-varying delays Chaos, Solitons & Fractals 2005;23:1363–9.
Trang 9[30] Boyd B, Ghaoui LE, Feron E, Balakrishnan V Linear matrix inequalities in systems and control theory Philadelphia: SIAM; 1994.
[31] Gahinet P, Nemirovski A, Laub A, Chilali M LMI control toolbox user’s guide Massachusetts: The Mathworks; 1995 [32] Gu K An integral inequality in the stability problem of time-delay systems In: Proceedings of IEEE conference decision control Sydney, Australia: December 2000 p 2805–10.