THE CAMBRIAN RADIATION, which commenced around 550 million years ago, arguably ranks as the single most important episode in the development of Earth’s marine biota.. We can see how rapi
Trang 1THE CAMBRIAN RADIATION, which commenced around 550 million years ago, arguably ranks as the single most important episode in the development of Earth’s marine biota Diverse benthic communities with complex tiering, trophic webs, and niche partitioning, together with an elaborate pelagic realm, were established soon af-ter the beginning of the Cambrian period This key event in the history of life changed the marine biosphere and its associated sediments forever
At first glance, abiotic factors such us climate change, transgressive-regressive sea level cycles, plate movements, tectonic processes, and the type and intensity of vol-canism appear very significant in the shaping of biotic evolution We can see how rapid rates of subsidence, as expressed in transgressive system tracts on the Australian cra-ton, selectively affected the diversity of organisms such as trace fossil producers, ar-chaeocyath sponges, and trilobites (Gravestock and Shergold — chapter 6); how glob-ally increased rates of subsidence and uplift accompanied dramatic biotic radiation
by increasing habitat size and allowing phosphorus- and silica-rich waters to invade platform interiors (Brasier and Lindsay — chapter 4); how climatic effects, coupled with intensive calc-alkaline volcanism, at the end of the Middle Cambrian may have caused a shift from aragonite- to calcite-precipitating seas, providing suitable con-ditions for development of the hardground biota (Seslavinsky and Maidanskaya — chapter 3; Eerola — chapter 5; Guensburg and Sprinkle — chapter 19); how the re-organization of plate boundaries (Smith — chapter 2; Seslavinsky and Maidanskaya) created conditions for current upwelling, which may in turn have been responsible for the appearance and proliferation of acritarch phytoplankton and many Early Cam-brian benthic organisms (Brasier and Lindsay; Ushatinskaya — chapter 16; Moldowan
et al.— chapter 21)
However, biotic factors themselves played a remarkable role in the environmental changes that formed the background to the Cambrian radiation We see how, by means
of biomineralization, shell beds and calcite debris contributed to the appearance of hardground communities (Droser and Li — chapter 7; Rozhnov — chapter 11); how
Andrey Yu Zhuravlev and Robert Riding
Introduction
Trang 2the intensification of bioturbation not only obliterated sedimentary structures but also increased aeration of deeper sediments and provided more space for the development
of infauna (Brasier and Lindsay; Droser and Li; Crimes — chapter 13); how the Early Cambrian biota changed the quality of seawater, thereby allowing the radiation of di-verse phototrophic communities (Zhuravlev — chapter 8; Burzin et al.— chapter 10); how the appearance of framework-building organisms created habitats for diverse reefal communities (Pratt et al.— chapter 12; Debrenne and Reitner — chapter 14; Riding — chapter 20); how the introduction of mesozooplankton in the Eltonian pyramid (in addition to predator and herbivore pressure) produced a cascade of eco-logic and evolutionary events in both the pelagic and benthic realms (Butterfield — chapter 9; Zhuravlev); and, finally, how biotic diversity itself, together with commu-nity structure, conditioned the intensity of extinction events and the timing and type
of abiotic factors that may have caused them (Zhuravlev)
This volume comprises 20 chapters, contributed by 33 authors based in 10 countries
It has three themes: environment; community patterns and dynamics; and radiation
of major groups of organisms The focus is the Cambrian period (tables 1.1 and 1.2), but inevitably discussion of these topics also draws on related events and develop-ments in the adjacent Neoproterozoic and Ordovician time intervals
ENVIRONMENT
The theme of the environment traces plate tectonic developments, paleogeographic changes, the history of transgressive-regressive cycles, sedimentary patterns, and cli-mate change, as recorded in carbon, strontium, and samarium-neodymium isotope curves, in the context of their influence on biotic development The records of bio-turbation and shell-bed fabrics, which provide links among physical, chemical, and biologic processes, are included, and there are data on biomarkers
COMMUNITY
The theme of community considers the biotas in their ecologic context, from their di-versification to the development of planktonic, level-bottom, reef, hardground, and deep-water communities
RADIATION
The theme of radiation examines deployment of adaptive abilities by dominant Cam-brian groups: brachiopods, cnidarians, coeloscleritophorans, cyanobacteria, algae, echinoderms, hyoliths, lobopods, mollusks, sponges, stenothecoids, trilobites, and other arthropods Other common groups, such as acritarchs, chaetognaths, hemichor-dates, conodont-chorhemichor-dates, various worms, and minor problematic animals, are not
Trang 3scrutinized separately, but aspects of their ecology are discussed within analyses of particular communities
Not all the views expressed in this book are in agreement, nor should they be We hope that comparison of the facts, arguments, and ideas presented will allow the reader to judge the relative importance of abiotic and biotic factors on the dramatic evolution-ary and ecologic expansion that was the Cambrian radiation of marine life
This volume is a contribution to IGCP Project 366, Ecological Aspects of the Cam-brian Radiation In addition, this work has involved participants from IGCP Projects
303 (Precambrian-Cambrian Event Stratigraphy), 319 (Global Paleogeography of the Late Precambrian and Early Paleozoic), 320 (Neoproterozoic Events and Resources),
368 (Proterozoic Events in East Gondwana Deposits), and 386 (Response of the Ocean /Atmosphere System to Past Global Events)
MUSEUM AND REPOSITORIES ABBREVIATIONS
AGSO (Australian Geological Survey Organisation, Canberra, Australia), GSC (Geo-logical Survey of Canada, Ottawa), HUPC (Harvard University Paleobotanical Collec-tion, Cambridge, USA), IGS (Iranian Geological Survey, Tehran), MNHN (Muséum National d’Histoire Naturelle, Paris, France), PIN (Paleontological Institute, Russian Academy of Sciences, Moscow), SAN (Sansha Collections, J Reitner, Göttingen, Ger-many), SMX (Sedgwick Museum, Cambridge University, United Kingdom), UA (Uni-versity of Alaska, USA), USNM (National Museum of Natural History, Smithsonian Institution, Washington, DC, USA), UW (University of Wisconsin, USA)
REFERENCES
Bowring, S A., J P Grotzinger, C E Isachsen,
A H Knoll, S M Pelechaty, and P Kolo-sov 1993 Calibrating rates of Early
Cam-brian evolution Science 261 : 1293 –1298.
Davidek, K., E Landing, S R Westrop,
A W A Rushton, R A Fortey, and J M
Adrain 1998 New uppermost Cambrian U-Pb date from Avalonian Wales and the age of the Cambrian-Ordovician
bound-ary Geological Magazine 132 : 305 –309.
Jago, J B and P W Haines 1998 Recent ra-diometric dating of some Cambrian rocks
in southern Australia: relevance to the
Cambrian time scale Revista Española de Paleontología, no extraordinario,
Home-naje al Prof Gonzalo Vidal, 115 –122
Landing, E., S A Bowring, K Davidek, S R Westrop, G Geyer, and W Heldmaier
1998 Duration of the Early Cambrian: U-Pb ages of volcanic ashes from Avalon
and Gondwana Canadian Journal of Earth Sciences 35 : 329–338.
Shergold, J H 1995 Timescales 1: Cam-brian Australian Phanerozoic Timescales,
Biostratigraphic Charts, and Explanatory Notes, 2d ser Australian Geological Sur-vey Organisation Record 1995/ 30 Zhuravlev, A Yu 1995 Preliminary sugges-tions on the global Early Cambrian
zona-tion Beringeria Special Issue 2 : 147–160.
Trang 4Table 1.1 Correlation Chart for Major Lower Cambrian Regions
Siberian Platform
Archaeocyath Zones
Archaeocyathus abacus beds
Syringocnema favus beds
Unnamed beds
Trilobite Zones (Stages) Xystridura templetonensis/
Redlichia chinensis
(Ordian/
Early Templetonian)
Pararaia janeae
Pararaia tatei Abadiella huoi
Pararaia bunyerooensis
*525 Ma
Stages
Canglangpuan
Meishucunian Qiongzhusian
Longwangmiaoan Maozhuangian Stages
*535 Ma
*545 Ma
Toyonian
Botoman
Atdabanian
Tommotian
Nemakit-Daldynian
Amgan
Trilobite, Archaeocyath, and Small Shelly Fossil Zones
Bergeroniellus ketemensis
Bergeroniellus asiaticus
Bergeroniellus micmacciformis/
Erbiella
Anabarites trisulcatus
1 1 1 1 1 1
4
2 2
2 2
3 3
3
4
4
Purella antiqua
Nochoroicyathus sunnaginicus Dokidocyathus regularis
Dokidocyathus lenaicus/
Tumuliolynthus primigenius
Nochoroicyathus kokoulini
Warriootacyathus wilkawillinensis Spirillicyathus tenuis Jugalicyathus tardus
Retecoscinus zegebarti Carinacyathus pinus Fansycyathus
Bergeroniellus gurarii
Bergeroniellus ornata
Lermontovia grandis/
Irinaecyathus shabanovi-Archaeocyathus okulitchi beds
Anabaraspis splendens Schistocephalus
Trilobite and Small Shelly Fossil Zones
Megapalaeolenus/
Palaeolenus
Drepanuroides
Yunnanaspis/
Yiliangella
Malungia Eoredlichia/ Wutingaspis
"Parabadiella"/
Mianxidiscus Lapworthella/
Tannuolina/
Sinosachites
Siphogonuchites/
Paracarinachites
Anabarites/
Protohertzina/
Arthrochites
Redlichia nobilis Redlichia chinensis Hoffetella
Australia China
Yaojiayella
CB
EB
SB
2/3
*523 Ma
Stages
Spain
Leonian
Bilbilian
Marianian
Cordubian
Alcudian Ovetian
Note: Approximate correlation of Lower Cambrian stratigraphic subdivisions for different regions,
modified from Zhuravlev 1995, and the positions of key Cambrian faunas: CB Chengjiang fauna, EB Emu Bay Shale, MC Mount Cup Formation, SB Sinsk fauna, SP Sirius Passet
Trang 5fauna In addition, in some chapters the Waucoban corresponds to the Early Cam-brian, and the Olenellid biomere is used for Atdabanian-Toyonian Reliable radioiso-tope ages from Bowring et al 1993, Jago and Haines 1998, and Landing et al 1998.
Stages
Hupeolenus
Sectigena
Antatlasia guttapluviae
Antatlasia hollardi
Daguinaspis
Choubertella
Eofallotaspis
Fallotaspis tazemmourtensis
Cephalopyge notabilis
Ornamentapsis frequens Trilobite Zones Trilobite Zones Stages Trilobite, Small Shelly Fossil,and Ichnofossil Zones
Protolenus
Callavia broeggeri
Camenella baltica
Sunnaginia imbricata
Harlaniella podolica
Watsonella crosbyi
No fauna known
No fauna known
"Ladatheca" cylindrica
"Phycodes" pedum
Branchian
Placentian
Albertella Plagiura/Poliella
Bonnia/
Olenellus
"Nevadella"
"Fallotaspis"
"Kibartay"
Volkovia dentifera/
Liepaina plana
Acritarch Zones
Eccaparadoxides insularis
Proampyx
Holmia kjerulfi
Holmia inusitata Schmidtiellus mikwitzi
Rusophycus parallelum
Platysolenites antiquissimus
Sabellidites "Rovno"
Skiagia ornata/
Fimbriaglomerella membranacea
Heliosphaeridium dissimilare/
Skiagia ciliosa
Asteridium Comasphaeridium velvetum
Trilobite, Small Shelly Fossil, and Ichnofossil Zones
Morocco Baltic Platform Laurentia Avalonia
Tissafinian
Banian
Issendalenian
SP MC
*511 Ma
Trang 6Table 1.2 Correlation Chart for Major Middle and Late Cambrian
Maozhuangian Xuzhuangian Zhangxian Kushanian Changshanian
Fengshanian
Xingchangian
Cordylodus lindstromi Cordylodus prolindstromi Hirsutodontus simplex Cordylodus proavus
Mictosaukia perplexa
Lophosaukia Rhaptagnostus clarki prolatus/
Caznaia sectatrix
Irvingella tropica Stigmatoa diloma Proceratopyge cryptica Glyptagnostus reticulatus Glyptagnostus stolidotus Acmarhachis quasivespa Glyptagnostus reticulatus
Pseudagnostus "curtare"
Pseudagnostus pseudangustilobus Ivshinagnostus ivshini
Oncagnostus longifrons
Oncagnostus kazachstanicus Oncagnostus ovaliformis Neoagnostus quadratiformis
Trisulcagnostus trisulcus Lotagnostus hedini
Dikelokephalina
Euloma limitaris/
Batyraspis
Lophosaukia Harpidoides/ Troedsonia
Eolotagnostus scrobicularis
Glyptagnostus stolidotus Agnostus pisiformis
Erediaspis eretis
Holteria arepo Proampyx agra Ptychagnostus cassis Goniagnostus nathorsti
Ptychagnostus punctuosus
Acidusus atavus
Triplagnostus gibbus
Xystridura templetonensis/
Euagnostus opimus Doryagnostus notalibrae
Damesella torosa/
Ascionepea jantrix
Idamean
Mindyallan Aysokkanian
Sakian
Batyrbayan
Iverian
Payntonian
Datsonian
Warendian
Australia
Ungurian
Kazakhstan & Siberia
Aksayan
Boomerangian
Undillan
Late Templetonian/
*495 Ma
Erixanium sentum
Wentsua iota/
Rhaptagnostus apsis
Rhaptagnostus clarki patulus/
Caznaia squamosa/
Peichiashania secunda/
Peichiashania glabella
Peichiashania tertia/
Peichiashania quarta
Sinosaukia impages
Neoagnostus quasibilobus/
Shergoldia nomas
China
KF Redlichia chinensis
Mayan
Leiopyge laevigata/
Anomocarioides limbataeformis Aldanaspis truncata
Anopolenus henrici/
Kounamkites Schistocephalus 1
1
2
2
3
3 4
5 6 1
1
2
2 3 1 1
3
Corynexochus perforatus
Pseudanomocarina
Note: Approximate correlation of Middle-Upper Cambrian stratigraphic subdivisions for
different regions, modified from Shergold 1995, and the positions of key Cambrian faunas: BS Burgess Shale, KF Kaili Formation, MF Marjum Formation, OR
orsten, WF Wheeler Formation In addition, in some chapters the Corynexochid,
Trang 7Rhabdinopora flabelliforme
Canadian
Ibexian
Sunwaptan
Steptoan
Marjuman
North America (Laurentia)
Trempealeauan
Franconian
Dresbachian
Albertian
Rhabdinopora Yosimuraspis
Richardsonella/
Platypeltoides
Missisquoia perpetis
Mictosaukia cf M orientalis
Tsinania/Ptychaspis
Kaolishania pustulosa
Maladioidella
Changshania conica
Chuangia batia
Drepanura Blackwelderia Damesella/ Yabeia
Leiopeishania
Taitzuia/Poshania
Amphoton Crepicephalina Bailiella/Lioparia Poriagraulos Hsuchuangia/Ruichengella Shantungaspis Yaojiayella
Scandinavia
Peltura transiens
Peltura scarabaeoides Peltura
Peltura minor Protopeltura praecursor
Leptoplastus raphidophorus Leptoplastus paucisegmentatus Parabolina spinulosa Parabolina
Parabolina brevispina
Olenus dentatus
Agnostus pisiformis OR
MF
BS WF
OR
Lejopyge laevigata
Jinsella brachymetopa
Hypagnostus parvifrons Tomagnostus fissus/
Acidiscus atavus Triplagnostus gibbus
Eccaparadoxides pinus
Glossopleura Ehmaniella Bolaspidella
Cedaria Crepicephalus Aphelaspis
Elvinia Dundenbergia Taenicephalus
Albertella Eccaparadoxides
Paradoxides paradoxissimus
Paradoxides forchhammeri
Ptychagnostus punctuosus Goniagnostus nathorsti
Olenus gibbosus Olenus truncatus Olenus wahlenbergi Olenus attenuatus Olenus scanicus Olenus
Leptoplastus crassicorne Leptoplastus ovatus Leptoplastus angustatus Leptoplastus stenotus
Leptoplastus
Peltura costata Westergaardia Acerocare ecorne Acerocare
OR
Idahoia Ellipsocephaloides
Saukiella pyrene/
Rasettia magna
Saukiella serotina Eurekia apopsis Missisquoia Symphysurina
Saukiella junia
oelandicus
*492 Ma
Agnostus pisiformis
China (cont.)
Marjumiid, Pterocephaliid, and Ptychaspid biomeres are used for Amgan, Marjuman, Step-toan, and Sunwaptan intervals, respectively Reliable radioisotope ages from Davidek et al.
1998 and Jago and Haines 1998.