1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Aircraft Flight Dynamics Robert F. Stengel Lecture20 Flying Qualities Criteria

12 247 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 1,5 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Flying Qualities Criteria Robert Stengel, Aircraft Flight Dynamics MAE 331, 2012 " Copyright 2012 by Robert Stengel.. • CAP, C*, and other longitudinal criteria" • ϕ/β , ωϕ/ω , and ot

Trang 1

Flying Qualities Criteria

Robert Stengel, Aircraft Flight Dynamics


MAE 331, 2012 "

Copyright 2012 by Robert Stengel All rights reserved For educational use only.!

http://www.princeton.edu/~stengel/MAE331.html !

http://www.princeton.edu/~stengel/FlightDynamics.html !

•   CAP, C*, and other longitudinal

criteria"

•   ϕ/β , ωϕ/ω , and other

lateral-directional criteria"

•  Pilot-vehicle interactions"

•  Flight control system design"

•  Satisfy procurement requirement (e.g., Mil Standard)"

•  Satisfy test pilots (e.g., Cooper-Harper ratings)"

•  Avoid pilot-induced oscillations (PIO)"

•  Minimize time-delay effects"

•  Time- and frequency-domain criteria"

MIL-F-8785C Identifies Satisfactory, Acceptable,

Damping Ratio"

Step Response"

Frequency Response"

Short-period angle-of-attack response to elevator input!

Longitudinal Criteria

Trang 2

Long-Period Flying Qualities Criteria

•  Static speed stability "

  No tendency for aperiodic divergence"

  Phugoid oscillation -> 2 real roots, 1 that is unstable"

  Stable control stick position and force gradients"

•  e.g., Increasing pull position and force with decreasing speed"

A   Non-terminal flight requiring rapid

maneuvering"

B   Non-terminal flight requiring gradual

maneuvering"

C   Terminal flight"

1   Clearly adequate for the mission"

2   Adequate to accomplish the mission, with some increase in workload"

3   Aircraft can be controlled safely, but workload is excessive"

Level of Performance!

Flight Phase!

Long-Period Flying Qualities Criteria

1   ( Δγ/ΔV)SS < 0.06 deg/kt"

2   ( Δγ/ΔV)SS < 0.15 deg/kt"

3   ( Δγ/ΔV)SS < 0.24 deg/kt "

ΔV SS = aΔδE SS+ ( ) 0 Δ δT SS + bΔδF SS

Δ γSS = cΔδE SS + dΔδT SS + eΔδF SS

• Lecture 19"

ΔγSS

c

• From 4 th -order model"

Long-Period Flying Qualities Criteria

  Phugoid stability "

1   Damping ratio ≥ 0.04"

2   Damping ratio ≥ 0"

3   Time to double , T 2 ≥ 55 sec"

Time to Double!

Short Period Criteria"

  Important parameters "

–  Short-period natural frequency"

–  Damping ratio"

–  Lift slope"

–  Step response"

  Over-/under-shoot"

  Rise time"

  Settling time"

  Pure time delay"

–  Pitch angle response"

–  Normal load factor response"

–  Flight path angle response (landing)"

Space Shuttle Pitch-Response Criterion"

Trang 3

Short-Period Approximation

Transfer Functions"

•   Elevator to pitch rate" ΔΔq(s)δE(s)= k q(s − z q)

s2 + 2 ζSPωn SP s +ωn SP

2 ≡

k q()s + 1Tθ2+,

s2 + 2 ζSPωn SP s +ωn SP

2

• Pure gain or phase change in feedback

control cannot produce instability"

Bode Plot!

Nichols Chart!

Root Locus!

Short-Period Approximation

Transfer Functions"

•  Elevator to pitch angle"

•  Integral of prior example"

Δ θ(s)

Δ δE(s)=

k q(s − z q)

s 2 + 2 ζSPωn SP s +ωn SP

2

•  Pure gain or phase change in feedback control cannot produce instability"

Bode Plot!

Nichols Chart!

Root Locus!

Normal Load Factor"

•   Therefore, with negligible L δE (aft tail/canard effect)"

Δn z =V N

g (Δ α − Δq) = −V N

g

Lα

V NΔα +

LδE

V N Δδ E

%

&'

( )*

1

%

&

)

g

%

&

)

∂ Δ δE(s)

positive down!

positive up!

Δα(s)

ΔδE(s)≈

kα

s2

+ 2ζSPωn SP s +ω n SP

2

•   Elevator to angle of attack (L δE = 0 )"

http://www.youtube.com/watch?v=xFemVFgsJAw!

Control Anticipation Parameter, CAP"

•  I nner ear senses angular acceleration about 3 axes"

Δ ˙ q (0) = M δEMα

V N + LαL δE

&

' ( )

*

+ ΔδE SS

Δn SS=V N

g Δq SS= −

V N g

&

'

)

*

M δE Lα

V N − Mα

L δE

V N

&

'

)

*

M q Lα

V N + Mα

&

'

)

* ΔδESS

Δn SS

=

V N + LαL δE

%

&

)

* M q Lα

V N + Mα

LαM δE − L δE Mα

•  Inner ear cue should aid pilot in anticipating commanded normal acceleration"

Initial Angular Acceleration!

Desired Normal Load Factor!

Control Anticipation Factor!

Trang 4

MIL-F-8785C

Short-Period

Flying

Qualities

Criterion"

CAP =

Lα

V N + Mα

ωn2SP

n z/ α

ωn SP vs. n z

α

1   Clearly adequate for the mission"

2   Adequate to accomplish the mission, with some increase in workload"

3   Aircraft can be controlled safely, but workload is excessive"

Level of Performance!

with L δE = 0!

•  CAP = constant

along Level

Boundaries "

CAP!

Control Anticipation Parameter vs Short-Period Damping Ratio "

− M q Lα

V N + Mα

Lα g

≈ ωn SP

2

n z / α

!  Below V crossover, Δq is pilot s primary control objective"

!  Above V crossover, Δn pilot is the primary control objective"

C*=Δn pilot+V crossover

g Δq

= (l pilot Δ q + Δn cm) +V crossover

g Δq

= l pilot Δ q + V N

g (Δq − Δ α )

$

%

( )+V crossover g Δq

Fighter Aircraft: V crossover ≈ 125 m / s

•   Hypothesis "

Gibson Dropback Criterion

•  Step response of pitch rate should have overshoot for satisfactory pitch and flight path angle response !

Δq(s)

ΔδE(s)=

k q s + 1

Tθ

2

$

%

&& ' ( ))

s2

+ 2ζSPωn SP s +ω n2SP

=

k q s +ωn SP

ζSP

$

%

( )

s2

+ 2ζSPωn SP s +ω n2SP

z q  − 1

Tθ

2

ζSP

%

&

)

*

•  Criterion is satisfied when !

Gibson, 1997!

Trang 5

Lateral-Directional Criteria

Lateral-Directional Flying Qualities Parameters"

Lateral Control Divergence

•  Aileron deflection produces yawing as well as rolling moment"

–  Favorable yaw aids the turn command"

–  Adverse yaw opposes it "

•  Equilibrium response to constant aileron input "

ΔφS

ΔδAS =

Nβ+ N r

Yβ

V N

%

&

)

* L δA − Lβ+ L r

Yβ

V N

%

&

)

* N δA

g

V N(LβN r − L r Nβ)

•  Large-enough NδA effect can reverse the sign of the response"

–  Can occur at high angle of attack "

–  Can cause departure from controlled flight "

LCDP ≡ C n

β −C nδA

C l

δA

C l

β

Nβ

( )LδA − L( )β NδA

LδA = Nβ−

NδA

LδA Lβ

•  Aileron-to-roll-angle transfer function "

Δφ(s)

kφ(s2+ 2ζφωφs +ωφ2)

s − λ S

( ) (s − λ R) s2+ 2ζDRωn DR s +ω n DR

2

  ωϕ is the natural frequency of the complex zeros"

  ωd = ωnDR is the natural frequency of the Dutch roll mode "

 Conditional instability may occur with closed-loop control of roll angle, even with a perfect pilot"

Trang 6

ωϕ/ω Effect"

Δφ(s) ΔδA(s)=

kφ s2

s −λS

( ) (s −λR)s2

+ 2 ζDRωn DR s +ωn2DR

ϕ/β Effect"

•   ϕ/β measures the degree of rolling response in the Dutch roll mode"

–   Large ϕ/β: Dutch roll is primarily a rolling motion"

–   Small ϕ/β: Dutch roll is primarily a yawing motion "

of the state component in the i th mode of motion"

λiI − F

Eigenvectors!

 Eigenvectors , i, are solutions to the equation"

λiI − F

or

can be found (within an arbitrary constant) from"

AdjiI − F)=( a1ei a2ei … a nei ), i = 1,n

MATLAB

V,D

V: Modal Matrix (i.e., Matrix of Eigenvectors) D: Diagonal Matrix of Corresponding Eigenvalues

the corresponding eigenvector is"

eDR+=

e r

eβ

e p

eφ

#

$

%

%

%

%

%

&

'

( ( ( ( (

DR+

=

σ + jω

σ + jω

σ + jω

σ + jω

#

$

%

%

%

%

%

%

&

'

( ( ( ( ( (

DR+

=

AR e jφ

( )r

AR e jφ

( ) β

AR e jφ

( )p

AR e jφ

( ) φ

#

$

%

%

%

%

%

%

%

&

'

( ( ( ( ( ( (

DR+

•   ϕ/β is the magnitude of the ratio of the ϕ andβ eigenvectors"

φ

AR

AR

g

#

$

% &

'

V N +

Lβ

L r

#

$

' (

2

2

,

- .

/ 0

1 1

1

Trang 7

ϕ/β Effect for the Business

Jet Example!

eDR+=

e r

eβ

e p

eφ

#

$

%

%

%

%

%

%

%

&

'

(

(

(

(

(

(

(DR+

=

0.525 0.416 0.603 0.433

#

$

%

%

%

%

&

'

( ( ( (

DR+

φ

β = 1.04

Roll/Sideslip Angle ratio in the Dutch roll mode!

Early Lateral-Directional

T1 = 0.693 / ζ ωn

v = V Nβ

O Hara, via Etkin!

Ashkenas, via Etkin!

Time to Half!

Criteria for Lateral-Directional

Maximum

Roll-Mode Time

Constant"

Minimum

Spiral-Mode

Time to Double"

Minimum Dutch Roll Natural

Trang 8

Pilot-Vehicle Interactions

Pilot-Induced Roll Oscillation"

Δφ(s)

Δδ A(s)pilot in loop

= K p / T p

s + 1 / T p

$

%

&

' ( )

kφ s2

+ 2ζφωφs + ωφ2

s − λ S

( ) (s − λ R) s2

+ 2ζDRωn DR s + ω n2DR

/

0 0

1 2

3 3

Aileron-to-Roll Angle

Pilot Transfer Function ! Aircraft Transfer Function !

YF-16!

YF-17 Landing

•  Original design"

frequency"

Elevator-to-pitch angle Nichols

80°

Phase Margin!

Gibson, 1997!

•  Revised DFCS design"

frequency"

–   CHR = 2 " Input frequency, rad/s"

13 dB Gain Margin!

•   Alternative pilot transfer function:

gain plus pure time delay "

H jω( )pilot = K P e − jωτ

•   Gain = constant"

•   Phase angle linear in frequency"

•   As input frequency increases, ϕ(ω)

eventually > –180°!

But Stability Margins Were Large

K P e − jωτ = K P  K P e − jωτ

H s( )pilot=Δu s( )

Δ ε ( )s = K P e

− τ

Trang 9

Inverse

Problem of

is the control history that

actions "

interconnect (ARI)

Grumman F-14 Tomcat!

Yaw Angle" Roll Angle" Command"

Angle of attack (α) =

10 deg; ARI off"

α = 30 deg; ARI off"

α = 30 deg; ARI on"

Stengel, Broussard, 1978!

Flight Control System

Design

Control System

–  State observer"

–  Kalman filter (optimal estimator)"

•   Assume Gaussian errors"

•   Combine withLQregulator "

•   LQGregulator "

–  Robustness"

–  Gain scheduling"

–  Adaptive control"

Proportional Stability Augmentation

Δu t( )= C F ΔyC( )t − C BΔx t( )

Section 4.7, Flight Dynamics"

dim Δu t"# ( )$% = m × 1; dim Δx t"# ( )$% = n × 1

dim ΔyC"# ( )t $% = r × 1, r ≤ m

dim CF[ ]= m × r; dim CB[ ]= m × n

•  Full state feedback"

ΔyC(t), than independent control inputs, Δ u(t)"

Trang 10

Proportional Stability Augmentation

with Command Input !

Δx t( )= FΔx t( )+ GΔu t( )

Δy t( )= H xΔx t( ); H u  0

Δu t( )= C F ΔyC( )t − C BΔx t( )

Δx t( )= FΔx t( )+ G C#$ F ΔyC( )t − C BΔx t( )%&

= F − GC#$ BΔx t( )%& Δx t( )+ GC F ΔyC( )t

= FCL Δx t( )+ GCLΔyC( )t

gains of the closed-loop command/stability

augmentation system"

Section 4.7, Flight Dynamics"

  Eigenvalues"

  Root loci"

  Transfer functions"

  Bode plots"

  Nichols charts"

  "

Next Time:

Maneuvering and Aeroelasticity

Reading

Supplemental

Material

Large Aircraft Flying Qualities"

•   High wing loading, W/S"

•   Distance from pilot to rotational center"

•   Slosh susceptibility of large tanks"

•   High wing span -> short relative tail length"

–   Higher trim drag"

–   Increased yaw due to roll, need for rudder coordination"

–   Reduced rudder effect "

•   Altitude response during approach"

–   Increased non-minimum-phase delay in response to elevator"

–   Potential improvement from canard "

•   Longitudinal dynamics"

–   Phugoid/short-period resonance "

•   Rolling response (e.g., time to bank)"

•   Reduced static stability"

•   Off-axis passenger comfort in BWB turns"

Trang 11

Criteria for Oscillations and Excursions

Proportional-Integral Command and

Δu t( )= C F ΔyC( )t − C I∫#$Δy t( )− ΔyC( )t %&dt− C BΔx t( )

Section 4.7, Flight Dynamics"

• Full state feedback"

• Command = desired output"

  r (≤ m) components"

Proportional-Integral Command and

Stability Augmentation !

Δx t( )= FΔx t( )+ GΔu t( )

Δy t( )= HxΔx t( ); H u  0

Δu t( )= C F ΔyC( )t − C I∫#$Δy t( )− ΔyC( )t %&dt− C BΔx t( )

Δx t( )= FΔx t( )+ G C{ F ΔyC( )t + C I∫#$Δy t( )− ΔyC( )t %&dt− C BΔx t( ) }

= F − GCB[ ]Δx t( )+ G CFΔy{ C( )t + CI∫#$ΔyC( )t − HxΔx t( )%&dt}

Section 4.7, Flight Dynamics"

Dynamics and Control!

Substitute Control in Dynamic Equation!

Trang 12

Proportional-Integral 


Command and Stability

Δy t( )= H xΔx t( ); H u  0

Δξ t( )  ∫$%ΔyC( )t − Δy t( )&'dt

= ∫$%ΔyC( )t − HxΔx t( )&'dt

Δξ t( ) ΔyC( )t − H xΔx t( )

Δx t( )= FCL Δx t( )+ GC F ΔyC( )t + GC IΔξ t( )

Δx t( )

Δξ t( )

#

$

%

%

&

'

( (=

−H x 0

#

$

%

%

&

'

( (

Δx t( )

Δξ t( )

#

$

%

%

&

'

( (+

GCL I

#

$

%

%

&

'

( (ΔyC

t

( )

Section 4.7, Flight Dynamics"

• Define integral state, Δξ(t)"

• dim[Δξ(t)] = dim[Δy(t)]"

• Augmented dynamic equation"

Proportional-Integral 
 Command and Stability

closed-loop command/stability augmentation system"

  Eigenvalues"

  Root loci"

  Transfer functions"

  Bode plots"

  Nichols charts"

  "

Δχ t( )  Δx t( )

Δξ t( )

$

%

&

&

'

(

) ); dim Δχ t$% ( )'( = n + r( ) × 1

Δχ t( )= FCL ' Δχ t( )+ GCL' ΔyC( )t

Proportional-Filter Stability

Δu t( ) = +∫#$C F ΔyC( )t − C BΔx t( )− −C IΔu t( )%&dt

Section 4.7, Flight Dynamics"

http://www.youtube.com/watch?v=GXdJxjvQZW4 !

http://www.youtube.com/watch?v=t6DdlPoPOE4 !

http://www.youtube.com/watch?v=j85jlc1Zfk4 !

Ngày đăng: 04/07/2014, 19:29

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm