Flying Qualities Criteria Robert Stengel, Aircraft Flight Dynamics MAE 331, 2012 " Copyright 2012 by Robert Stengel.. • CAP, C*, and other longitudinal criteria" • ϕ/β , ωϕ/ω , and ot
Trang 1Flying Qualities Criteria
Robert Stengel, Aircraft Flight Dynamics
MAE 331, 2012 "
Copyright 2012 by Robert Stengel All rights reserved For educational use only.!
http://www.princeton.edu/~stengel/MAE331.html !
http://www.princeton.edu/~stengel/FlightDynamics.html !
• CAP, C*, and other longitudinal
criteria"
• ϕ/β , ωϕ/ω , and other
lateral-directional criteria"
• Pilot-vehicle interactions"
• Flight control system design"
• Satisfy procurement requirement (e.g., Mil Standard)"
• Satisfy test pilots (e.g., Cooper-Harper ratings)"
• Avoid pilot-induced oscillations (PIO)"
• Minimize time-delay effects"
• Time- and frequency-domain criteria"
MIL-F-8785C Identifies Satisfactory, Acceptable,
Damping Ratio"
Step Response"
Frequency Response"
Short-period angle-of-attack response to elevator input!
Longitudinal Criteria
Trang 2Long-Period Flying Qualities Criteria
• Static speed stability "
– No tendency for aperiodic divergence"
• Phugoid oscillation -> 2 real roots, 1 that is unstable"
– Stable control stick position and force gradients"
• e.g., Increasing pull position and force with decreasing speed"
A Non-terminal flight requiring rapid
maneuvering"
B Non-terminal flight requiring gradual
maneuvering"
C Terminal flight"
1 Clearly adequate for the mission"
2 Adequate to accomplish the mission, with some increase in workload"
3 Aircraft can be controlled safely, but workload is excessive"
Level of Performance!
Flight Phase!
Long-Period Flying Qualities Criteria
1 ( Δγ/ΔV)SS < 0.06 deg/kt"
2 ( Δγ/ΔV)SS < 0.15 deg/kt"
3 ( Δγ/ΔV)SS < 0.24 deg/kt "
ΔV SS = aΔδE SS+ ( ) 0 Δ δT SS + bΔδF SS
Δ γSS = cΔδE SS + dΔδT SS + eΔδF SS
• Lecture 19"
ΔγSS
c
• From 4 th -order model"
Long-Period Flying Qualities Criteria
• Phugoid stability "
1 Damping ratio ≥ 0.04"
2 Damping ratio ≥ 0"
3 Time to double , T 2 ≥ 55 sec"
€
Time to Double!
Short Period Criteria"
• Important parameters "
– Short-period natural frequency"
– Damping ratio"
– Lift slope"
– Step response"
• Over-/under-shoot"
• Rise time"
• Settling time"
• Pure time delay"
– Pitch angle response"
– Normal load factor response"
– Flight path angle response (landing)"
Space Shuttle Pitch-Response Criterion"
Trang 3Short-Period Approximation
Transfer Functions"
• Elevator to pitch rate" ΔΔq(s)δE(s)= k q(s − z q)
s2 + 2 ζSPωn SP s +ωn SP
2 ≡
k q()s + 1Tθ2+,
s2 + 2 ζSPωn SP s +ωn SP
2
• Pure gain or phase change in feedback
control cannot produce instability"
Bode Plot!
Nichols Chart!
Root Locus!
Short-Period Approximation
Transfer Functions"
• Elevator to pitch angle"
• Integral of prior example"
Δ θ(s)
Δ δE(s)=
k q(s − z q)
s 2 + 2 ζSPωn SP s +ωn SP
2
• Pure gain or phase change in feedback control cannot produce instability"
Bode Plot!
Nichols Chart!
Root Locus!
Normal Load Factor"
• Therefore, with negligible L δE (aft tail/canard effect)"
Δn z =V N
g (Δ α − Δq) = −V N
g
Lα
V NΔα +
LδE
V N Δδ E
%
&'
( )*
1
%
&
)
g
%
&
)
∂ Δ δE(s)
positive down!
positive up!
Δα(s)
ΔδE(s)≈
kα
s2
+ 2ζSPωn SP s +ω n SP
2
• Elevator to angle of attack (L δE = 0 )"
http://www.youtube.com/watch?v=xFemVFgsJAw!
Control Anticipation Parameter, CAP"
• I nner ear senses angular acceleration about 3 axes"
€
Δ ˙ q (0) = M δE− Mα
V N + LαL δE
&
' ( )
*
+ ΔδE SS
Δn SS=V N
g Δq SS= −
V N g
&
'
)
*
M δE Lα
V N − Mα
L δE
V N
&
'
)
*
M q Lα
V N + Mα
&
'
)
* ΔδESS
Δn SS
=
V N + LαL δE
%
&
)
* M q Lα
V N + Mα
LαM δE − L δE Mα
• Inner ear cue should aid pilot in anticipating commanded normal acceleration"
Initial Angular Acceleration!
Desired Normal Load Factor!
Control Anticipation Factor!
Trang 4MIL-F-8785C
Short-Period
Flying
Qualities
Criterion"
CAP =
Lα
V N + Mα
ωn2SP
n z/ α
€
ωn SP vs. n z
α
1 Clearly adequate for the mission"
2 Adequate to accomplish the mission, with some increase in workload"
3 Aircraft can be controlled safely, but workload is excessive"
Level of Performance!
with L δE = 0!
• CAP = constant
along Level
Boundaries "
CAP!
Control Anticipation Parameter vs Short-Period Damping Ratio "
− M q Lα
V N + Mα
Lα g
≈ ωn SP
2
n z / α
! Below V crossover, Δq is pilot s primary control objective"
! Above V crossover, Δn pilot is the primary control objective"
C*=Δn pilot+V crossover
g Δq
= (l pilot Δ q + Δn cm) +V crossover
g Δq
= l pilot Δ q + V N
g (Δq − Δ α )
$
%
( )+V crossover g Δq
Fighter Aircraft: V crossover ≈ 125 m / s
• Hypothesis "
Gibson Dropback Criterion
• Step response of pitch rate should have overshoot for satisfactory pitch and flight path angle response !
Δq(s)
ΔδE(s)=
k q s + 1
Tθ
2
$
%
&& ' ( ))
s2
+ 2ζSPωn SP s +ω n2SP
=
k q s +ωn SP
ζSP
$
%
( )
s2
+ 2ζSPωn SP s +ω n2SP
z q − 1
Tθ
2
ζSP
%
&
)
*
• Criterion is satisfied when !
Gibson, 1997!
Trang 5Lateral-Directional Criteria
Lateral-Directional Flying Qualities Parameters"
Lateral Control Divergence
• Aileron deflection produces yawing as well as rolling moment"
– Favorable yaw aids the turn command"
– Adverse yaw opposes it "
• Equilibrium response to constant aileron input "
ΔφS
ΔδAS =
Nβ+ N r
Yβ
V N
%
&
)
* L δA − Lβ+ L r
Yβ
V N
%
&
)
* N δA
g
V N(LβN r − L r Nβ)
• Large-enough NδA effect can reverse the sign of the response"
– Can occur at high angle of attack "
– Can cause departure from controlled flight "
LCDP ≡ C n
β −C nδA
C l
δA
C l
β
Nβ
( )LδA − L( )β NδA
LδA = Nβ−
NδA
LδA Lβ
• Aileron-to-roll-angle transfer function "
Δφ(s)
kφ(s2+ 2ζφωφs +ωφ2)
s − λ S
( ) (s − λ R) s2+ 2ζDRωn DR s +ω n DR
2
ωϕ is the natural frequency of the complex zeros"
ωd = ωnDR is the natural frequency of the Dutch roll mode "
• Conditional instability may occur with closed-loop control of roll angle, even with a perfect pilot"
Trang 6ωϕ/ω Effect"
Δφ(s) ΔδA(s)=
kφ s2
s −λS
( ) (s −λR)s2
+ 2 ζDRωn DR s +ωn2DR
ϕ/β Effect"
• ϕ/β measures the degree of rolling response in the Dutch roll mode"
– Large ϕ/β: Dutch roll is primarily a rolling motion"
– Small ϕ/β: Dutch roll is primarily a yawing motion "
of the state component in the i th mode of motion"
λiI − F
Eigenvectors!
• Eigenvectors , i, are solutions to the equation"
λiI − F
or
can be found (within an arbitrary constant) from"
Adj(λiI − F)=( a1ei a2ei … a nei ), i = 1,n
MATLAB
V,D
V: Modal Matrix (i.e., Matrix of Eigenvectors) D: Diagonal Matrix of Corresponding Eigenvalues
the corresponding eigenvector is"
eDR+=
e r
eβ
e p
eφ
#
$
%
%
%
%
%
&
'
( ( ( ( (
DR+
=
σ + jω
σ + jω
σ + jω
σ + jω
#
$
%
%
%
%
%
%
&
'
( ( ( ( ( (
DR+
=
AR e jφ
( )r
AR e jφ
( ) β
AR e jφ
( )p
AR e jφ
( ) φ
#
$
%
%
%
%
%
%
%
&
'
( ( ( ( ( ( (
DR+
• ϕ/β is the magnitude of the ratio of the ϕ andβ eigenvectors"
φ
AR
AR
g
#
$
% &
'
V N +
Lβ
L r
#
$
' (
2
2
,
- .
/ 0
1 1
1
Trang 7ϕ/β Effect for the Business
Jet Example!
eDR+=
e r
eβ
e p
eφ
#
$
%
%
%
%
%
%
%
&
'
(
(
(
(
(
(
(DR+
=
0.525 0.416 0.603 0.433
#
$
%
%
%
%
&
'
( ( ( (
DR+
φ
β = 1.04
Roll/Sideslip Angle ratio in the Dutch roll mode!
Early Lateral-Directional
T1 = 0.693 / ζ ωn
v = V Nβ
O Hara, via Etkin!
Ashkenas, via Etkin!
Time to Half!
Criteria for Lateral-Directional
Maximum
Roll-Mode Time
Constant"
Minimum
Spiral-Mode
Time to Double"
Minimum Dutch Roll Natural
Trang 8Pilot-Vehicle Interactions
Pilot-Induced Roll Oscillation"
Δφ(s)
Δδ A(s)pilot in loop
= K p / T p
s + 1 / T p
$
%
&
' ( )
kφ s2
+ 2ζφωφs + ωφ2
s − λ S
( ) (s − λ R) s2
+ 2ζDRωn DR s + ω n2DR
/
0 0
1 2
3 3
Aileron-to-Roll Angle
Pilot Transfer Function ! Aircraft Transfer Function !
YF-16!
YF-17 Landing
• Original design"
frequency"
Elevator-to-pitch angle Nichols
80°
Phase Margin!
Gibson, 1997!
• Revised DFCS design"
frequency"
– CHR = 2 " Input frequency, rad/s"
13 dB Gain Margin!
• Alternative pilot transfer function:
gain plus pure time delay "
H jω( )pilot = K P e − jωτ
• Gain = constant"
• Phase angle linear in frequency"
• As input frequency increases, ϕ(ω)
eventually > –180°!
But Stability Margins Were Large
K P e − jωτ = K P K P e − jωτ
H s( )pilot=Δu s( )
Δ ε ( )s = K P e
− τ
Trang 9Inverse
Problem of
is the control history that
actions "
interconnect (ARI)
Grumman F-14 Tomcat!
Yaw Angle" Roll Angle" Command"
Angle of attack (α) =
10 deg; ARI off"
α = 30 deg; ARI off"
α = 30 deg; ARI on"
Stengel, Broussard, 1978!
Flight Control System
Design
Control System
– State observer"
– Kalman filter (optimal estimator)"
• Assume Gaussian errors"
• Combine withLQregulator "
• LQGregulator "
– Robustness"
– Gain scheduling"
– Adaptive control"
Proportional Stability Augmentation
Δu t( )= C F ΔyC( )t − C BΔx t( )
Section 4.7, Flight Dynamics"
dim Δu t"# ( )$% = m × 1; dim Δx t"# ( )$% = n × 1
dim ΔyC"# ( )t $% = r × 1, r ≤ m
dim CF[ ]= m × r; dim CB[ ]= m × n
• Full state feedback"
ΔyC(t), than independent control inputs, Δ u(t)"
Trang 10Proportional Stability Augmentation
with Command Input !
Δx t( )= FΔx t( )+ GΔu t( )
Δy t( )= H xΔx t( ); H u 0
Δu t( )= C F ΔyC( )t − C BΔx t( )
Δx t( )= FΔx t( )+ G C#$ F ΔyC( )t − C BΔx t( )%&
= F − GC#$ BΔx t( )%& Δx t( )+ GC F ΔyC( )t
= FCL Δx t( )+ GCLΔyC( )t
gains of the closed-loop command/stability
augmentation system"
Section 4.7, Flight Dynamics"
• Eigenvalues"
• Root loci"
• Transfer functions"
• Bode plots"
• Nichols charts"
• "
Next Time:
Maneuvering and Aeroelasticity
Reading
Supplemental
Material
Large Aircraft Flying Qualities"
• High wing loading, W/S"
• Distance from pilot to rotational center"
• Slosh susceptibility of large tanks"
• High wing span -> short relative tail length"
– Higher trim drag"
– Increased yaw due to roll, need for rudder coordination"
– Reduced rudder effect "
• Altitude response during approach"
– Increased non-minimum-phase delay in response to elevator"
– Potential improvement from canard "
• Longitudinal dynamics"
– Phugoid/short-period resonance "
• Rolling response (e.g., time to bank)"
• Reduced static stability"
• Off-axis passenger comfort in BWB turns"
Trang 11Criteria for Oscillations and Excursions
Proportional-Integral Command and
Δu t( )= C F ΔyC( )t − C I∫#$Δy t( )− ΔyC( )t %&dt− C BΔx t( )
Section 4.7, Flight Dynamics"
• Full state feedback"
• Command = desired output"
– r (≤ m) components"
Proportional-Integral Command and
Stability Augmentation !
Δx t( )= FΔx t( )+ GΔu t( )
Δy t( )= HxΔx t( ); H u 0
Δu t( )= C F ΔyC( )t − C I∫#$Δy t( )− ΔyC( )t %&dt− C BΔx t( )
Δx t( )= FΔx t( )+ G C{ F ΔyC( )t + C I∫#$Δy t( )− ΔyC( )t %&dt− C BΔx t( ) }
= F − GCB[ ]Δx t( )+ G CFΔy{ C( )t + CI∫#$ΔyC( )t − HxΔx t( )%&dt}
Section 4.7, Flight Dynamics"
Dynamics and Control!
Substitute Control in Dynamic Equation!
Trang 12Proportional-Integral
Command and Stability
Δy t( )= H xΔx t( ); H u 0
Δξ t( ) ∫$%ΔyC( )t − Δy t( )&'dt
= ∫$%ΔyC( )t − HxΔx t( )&'dt
Δξ t( ) ΔyC( )t − H xΔx t( )
Δx t( )= FCL Δx t( )+ GC F ΔyC( )t + GC IΔξ t( )
Δx t( )
Δξ t( )
#
$
%
%
&
'
( (=
−H x 0
#
$
%
%
&
'
( (
Δx t( )
Δξ t( )
#
$
%
%
&
'
( (+
GCL I
#
$
%
%
&
'
( (ΔyC
t
( )
Section 4.7, Flight Dynamics"
• Define integral state, Δξ(t)"
• dim[Δξ(t)] = dim[Δy(t)]"
• Augmented dynamic equation"
Proportional-Integral Command and Stability
closed-loop command/stability augmentation system"
• Eigenvalues"
• Root loci"
• Transfer functions"
• Bode plots"
• Nichols charts"
• "
Δχ t( ) Δx t( )
Δξ t( )
$
%
&
&
'
(
) ); dim Δχ t$% ( )'( = n + r( ) × 1
Δχ t( )= FCL ' Δχ t( )+ GCL' ΔyC( )t
Proportional-Filter Stability
Δu t( ) = +∫#$C F ΔyC( )t − C BΔx t( )− −C IΔu t( )%&dt
Section 4.7, Flight Dynamics"
http://www.youtube.com/watch?v=GXdJxjvQZW4 !
http://www.youtube.com/watch?v=t6DdlPoPOE4 !
http://www.youtube.com/watch?v=j85jlc1Zfk4 !