Linearized Equations Robert Stengel, Aircraft Flight Dynamics MAE 331, 2012" – Nominal flight path" – Perturbations about the nominal flight path " – Longitudinal" – Lateral-directi
Trang 1Linearized Equations
Robert Stengel, Aircraft Flight Dynamics
MAE 331, 2012"
– Nominal flight path"
– Perturbations about the nominal flight path "
– Longitudinal"
– Lateral-directional "
Copyright 2012 by Robert Stengel All rights reserved For educational use only.!
http://www.princeton.edu/~stengel/MAE331.html !
http://www.princeton.edu/~stengel/FlightDynamics.html !
The Mystery Airplane:
Convair XF-92A (1948)
! Precursor to F-102, F-106, B-58, and F2Y"
! M = 1.05 in a dive; under-powered, pre-area rule"
! Landed at θ = 45°, V = 67 mph (108 km/h)"
! Violent pitchup during high-speed turns, alleviated by wing fences"
! Poor high-speed and good low-speed handling qualities "
Nominal and Actual
Flight Paths
Nominal and Actual Trajectories"
• Nominal (or reference) trajectory and control history"
xN(t), uN(t), wN(t)
• Actual trajectory perturbed by"
– Small initial condition variation, Δxo(to) "
– Small control variation, Δu(t)"
x(t), u(t), w(t)
= x { N(t) + Δx(t), uN(t) + Δu(t),wN(t) + Δw(t) }
€
x : dynamic state
u : control input
w : disturbance input
Trang 2Both Paths Satisfy the Dynamic Equations"
• Dynamic models for the actual and the
nominal problems are the same"
x N (t) = f[x N (t), u N (t), w N (t)], x N ( ) t o given
x(t) = f[x(t),u(t),w(t)], x t ( ) o given
x(t) = xN(t) + Δx(t)
x(t) − xN(t) + Δx(t)
#
$
&%
' ( )%
in t *+o,tf
,-Δx(to) = x(to) − xN(to)
Δu(t) = u(t) − uN(t)
Δw(t) = w(t) − wN(t)
#
$
&%
' ( )%
in t *+o,tf
,-• Differences in initial
condition and forcing " • perturb rate of change and the state"
Approximate Neighboring Trajectory as a Linear Perturbation
to the Nominal Trajectory"
x(t) = xN(t) + Δx(t)
≈ f[xN(t), uN(t), wN(t),t] + ∂f
∂f
∂f
• Approximate the new trajectory as the sum of the nominal path plus a linear perturbation"
xN(t) = f[xN(t), uN(t), wN(t),t]
x(t) = xN(t) + Δx(t) = f[xN(t) + Δx(t),uN(t) + Δu(t),wN(t) + Δw(t),t]
Linearized Equation Approximates
Perturbation Dynamics"
• Solve for the nominal and perturbation trajectories
separately"
x N (t) = f[x N (t), u N (t), w N (t),t], x N ( ) t o given
Δx(t) ≈ ∂ f
∂ x=xN (t )
u=uN (t )
w=wN (t )
Δx(t)
$
%
&
&
&
' (
) ) )
+ ∂ f
∂ ux=xN (t )
u=uN (t )
w=wN (t )
Δu(t)
$
%
&
&
&
' (
) ) )
+ ∂ f
∂ wx=xN (t )
u=uN (t )
w=wN (t )
Δw(t)
$
%
&
&
&
' (
) ) )
F(t) Δx(t)+ G(t) Δu(t)+ L(t) Δw(t), Δx t ( )o given
dim(x) = n × 1 dim(u) = m × 1 dim(w) = s × 1
dim(Δx) = n × 1 dim(Δu) = m × 1 dim(Δw) = s × 1
Nominal Equation"
Perturbation Equation"
Sensitivity to Small Perturbations"
• Sensitivity to state perturbations: stability matrix, F , is square"
∂ x x=xN(t )
u=uN(t )
w=wN(t )
=
∂ f 1
∂ x 1
∂ f 1
∂ x n
∂ f n
∂ x 1 ∂ f n
∂ x n
"
#
$
$
$
$
$
%
&
' ' ' ' ' x=x
N(t )
u=uN(t )
w=wN(t )
∂u x = xN(t )
u= uN(t )
w = w (t )
∂w x = xN(t )
u= uN(t )
w = w (t )
• Sensitivity to control and disturbance perturbations is similar, but matrices, G and L , may not be square"
dim(F) = n × n
Trang 3• Linear and nonlinear, varying and
– Numerical integration ( time domain )"
– Numerical integration ( time domain )"
– State transition ( time domain )"
– Transfer functions ( frequency domain )"
How Is System
Response Calculated?"
Numerical Integration :"
MATLAB Ordinary Differential Equation
• Explicit Runge-Kutta Algorithm"
• Numerical Differentiation Formula"
* http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?/access/helpdesk/help/techdoc/ref/ode23.html.!
Shampine, L F and M W Reichelt, "The MATLAB ODE Suite," SIAM Journal on Scientific Computing, Vol 18, 1997, pp 1-22.!
• Adams-Bashforth-Moulton Algorithm"
• Modified Rosenbrock Method"
• Trapezoidal Rule"
• Trapezoidal Rule w/Back Differentiation"
MATLAB Simulation of Linear and
Nonlinear Dynamic Systems"
• MATLAB Main Script"
% Nonlinear and Linear Examples"
clear"
tspan = [0 10]; "
xo = [0, 10];"
[t1,x1 = ode23('NonLin',tspan,xo); "
xo = [0, 1];"
[t2,x2] = ode23('NonLin',tspan,xo); "
xo = [0, 10];"
[t3,x3] = "ode23('Lin',tspan,xo);"
xo = [0, 1];"
[t4,x4] = ode23('Lin',tspan,xo);"
"
subplot(2,1,1)"
plot(t1,x1(:,1),'k',t2,x2(:,1),'b',t3,x3(:,1),'r',t4,x4(:,1),'g')"
ylabel('Position'), grid"
subplot(2,1,2)"
plot(t1,x1(:,2),'k',t2,x2(:,2),'b',t3,x3(:,2),'r',t4,x4(:,2),'g')"
xlabel('Time'), ylabel('Rate'), grid"
• Linear System"
function xdot = Lin(t,x)"
% Linear Ordinary Differential Equation"
% x(1) = Position"
% x(2) = Rate"
xdot = [x(2)"
-10*x(1) - x(2)];"
• Nonlinear System"
function xdot = NonLin(t,x)"
% Nonlinear Ordinary Differential Equation"
% x(1) = Position"
% x(2) = Rate ""
xdot = [x(2)"
€
˙
x 1(t) = x2(t)
˙
x 2(t) = −10x1(t) − x2(t)
€
˙
x 1(t) = x2(t)
˙
x 2(t) = −10x1(t) + 0.8x1(t) − x2(t)
Comparison of Damped
3
(t) − x2(t)
Linear plus Stiffening Cubic Spring"
Linear plus Weakening Cubic Spring"
3
(t) − x2(t)
Displacement"
Spring" Damper"
Displacement"
Rate of Change"
Trang 4Linear and Stiffening
Cubic Springs: Small and Large Initial Conditions"
• Linear and nonlinear responses are indistinguishable with small initial condition"
Linear and Weakening
Cubic Springs: Small and Large Initial Conditions"
Linear, Time-Varying (LTV)
Approximation of
Perturbation Dynamics
Stiffening Linear-Cubic Spring Example"
! Nonlinear, time-invariant (NTI) equation"
x 1 (t) = f 1 = x 2 (t)
x 2 (t) = f 2 = −10x 1 (t) − 10x 1 3 (t) − x 2 (t)
! Integrate equations to produce nominal path"
x1N(0)
x2N(0)
!
"
#
#
$
%
&
f1N
f2N
!
"
#
#
$
%
&
0
t f
x2N(t)
!
"
#
#
$
%
&
! Analytical evaluation of partial derivatives"
∂ f1
∂ x1
= 0; ∂ f1
∂ x2
= 1
∂ f2
∂ x1
= −10 − 30x1
N
2(t) ; ∂ f2
∂ x2
= −1
∂ u = 0; ∂ f1∂ w = 0
∂ u = 0; ∂ f2∂ w = 0
Trang 5Nominal (NTI) and Perturbation
xN(t) = f[xN(t)], xN(0) given
x1N(t) = x2N(t)
x2
N(t) = −10x1N(t) − 10x1N
3
(t) − x2N(t)
Δx(t) = F(t)Δx(t), Δx(0) given
Δx1(t)
Δx2(t)
"
#
$
$
%
&
'
' =
− 10 + 30x12N
(t)
"
#
$
$
%
&
' '
Δx1(t)
Δx2(t)
"
#
$
$
%
&
' '
x1
N(0)
x2
N(0)
!
"
#
#
$
%
&
& =
0 9
!
"
%
&
! Nonlinear, time-invariant (NTI) nominal equation"
! Perturbations approximated by linear, time-varying (LTV) equation"
Δx1(0)
Δx2(0)
"
#
$
$
%
&
' ' =
0 1
"
#
&
'
Example"
Example"
Comparison of Approximate and Exact Solutions"
xN(t)
Δx(t)
xN(t)+ Δx(t) x(t)
Initial Conditions
x2N(0) = 9
x2N(t)+ Δx2(t) = 10
x2(t) = 10
xN(t)
Δx(t)
xN(t) + Δx(t)
x(t)
Suppose Nominal Initial
Condition is Zero"
• Nominal solution remains at equilibrium"
• Perturbation equation is linear and time-invariant (LTI)"
"
#
$
$
%
&
'
"
#
$
$
%
&
' '
"
#
$
$
%
&
' '
Separation of the Equations of Motion into Longitudinal and
Lateral-Directional Sets
Trang 6Rigid-Body Equations of Motion (Scalar Notation)"
Translational Position "
• Rate of change of
Angular Position"
Translational Velocity "
• Rate of change of
Angular Velocity
(Ixy = I yz = 0) "
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
!
"
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
=
u v w x y z p q r
φ θ ψ
!
"
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
State Vector"
u = X / m − gsinθ + rv − qw
v = Y / m + gsinφ cosθ − ru + pw
w = Z / m + g cosφ cosθ + qu − pv
x I= cosθ cosψ( )u + − cosφ sinψ + sinφ sinθ cosψ( )v + sinφ sinψ + cosφ sinθ cosψ( )w
y I= cosθ sinψ( )u + cosφ cosψ + sinφ sinθ sinψ( )v + − sinφ cosψ + cosφ sinθ sinψ( )w
z I= − sinθ( )u + sinφ cosθ( )v + cosφ cosθ( )w
φ = p + qsinφ + r cosφ ( ) tanθ
θ = qcosφ − rsinφ
ψ = q sinφ + r cosφ ( ) secθ
p = I zz L + I xz N − I xz(I yy − I xx − I zz)p + I xz
2
+ I zz(I zz − I yy)
" $% r
2
( )
q = M − I(xx − I zz)pr − I xz p2
− r2
( )
" $% ÷ I yy
r = I xz L + I xx N − I xz(I yy − I xx − I zz)r + I xz
2
+ I xx(I xx − I yy)
" $% p
2
( )
Reorder the State Vector"
€
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
!
"
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&new
xLat−Dir
!
"
#
#
$
%
&
& =
u w x z q
θ
v y p r
φ ψ
!
"
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
the state are
longitudinal variables"
"
Second six elements of the state are lateral-directional variables"
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
!
"
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
=
u v w x y z p q r
φ θ ψ
!
"
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
Longitudinal Equations of Motion "
xI= cosθ cosψ ( ) u + − cosφ sinψ + sinφ sinθ cosψ ( ) v + sinφ sinψ + cosφ sinθ cosψ ( ) w = x3= f3
q = M − I (xx− Izz) pr − Ixz p2
− r2
x Lon (t) = f[x Lon (t), u Lon (t), w Lon (t)]
yI= cosθ sinψ ( ) u + cosφ cosψ + sinφ sinθ sinψ ( ) v + − sinφ cosψ + cosφ sinθ sinψ ( ) w = x8= f8
p = IzzL + IxzN − Ixz( Iyy− Ixx− Izz) p + Ixz
2
+ Izz( Izz− Iyy)
2
( ) = x9= f9
r = IxzL + IxxN − Ixz( Iyy− Ixx− Izz) r + Ixz
2
+ Ixx( Ixx− Iyy)
( p
2
( ) = x10= f10
Lateral-Directional Equations of Motion "
• Dynamics of position, velocity, angle, and angular rate out of the vertical plane "
xLD(t) = f[xLD(t), uLD(t), wLD(t)]
Trang 7Sensitivity to Small Motions "
F(t) =
∂ f1
∂ 1
∂ f1
∂ 2
∂ f1
∂ 12
∂ f2
∂ 1
∂ f2
∂ 2 ∂ f2
∂ 12
∂ f12
∂ 1
∂ f12
∂ 2
∂ f12
∂ 12
"
#
$
$
$
$
$
$
$
$
%
&
' ' ' ' ' ' ' '
=
∂ u
∂ w ∂ u
∂ψ
∂ w
∂ w ∂ w
∂ψ
∂ ψ
ψ
ψ
∂ψ
"
#
$
$
$
$
$
$
$
%
&
' ' ' ' ' ' '
• Four (6 x 6) blocks distinguish longitudinal and lateral-directional effects "
F = FLon FLat−Dir Lon
FLon Lat−Dir FLat−Dir
"
#
$
$
%
&
' '
Effects of longitudinal perturbations
on longitudinal motion"
Effects of longitudinal perturbations
on lateral-directional motion"
Effects of lateral-directional perturbations on longitudinal motion"
Effects of lateral-directional perturbations
on lateral-directional motion"
Sensitivity to Control Inputs"
G = GLon GLat−Dir
Lon
GLon Lat−Dir
GLat−Dir
"
#
$
$
%
&
' '
Effects of longitudinal controls on longitudinal motion"
Effects of longitudinal controls on lateral-directional motion"
Effects of lateral-directional controls
on longitudinal motion"
Effects of lateral-directional controls on lateral-directional motion"
u(t) =
δE(t)
δT (t) δF(t) δA(t) δR(t) δSF(t)
"
#
$
$
$
$
$
$
$
$
%
&
' ' ' ' ' ' ' '
Elevator, deg or rad Throttle, % Flaps, deg or rad Ailerons, deg or rad Rudder, deg or rad Side Force Panels, deg or rad
Δu(t) =
ΔδE(t) ΔδT (t) ΔδF(t) ΔδA(t) ΔδR(t) ΔδSF(t)
#
$
%
%
%
%
%
%
%
%
&
'
( ( ( ( ( ( ( (
Decoupling Approximation
for Small Perturbations
from Steady, Level Flight
Restrict the Nominal Flight Path
longitudinal equations
lateral-directional motions
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
!
"
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&N
= xLon
xLat−Dir
!
"
#
#
$
%
&
&
N
=
uN
wN
xN
zN
qN
θN
0 0 0 0 0 0
!
"
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
uN= X / m − g sinθN− qNwN
wN = Z / m + g cosθN+ qNuN
xI
N = cosθ ( N) uN+ sinθ ( N) wN
zI N = − sinθ ( N) uN+ cosθ ( N) wN
qN= M
Iyy
θN= qN
xLat − Dir N = 0
xLat − Dir
N = 0
Nominal State Vector"
Lateral-directional perturbations need not be zero"
ΔxLat − Dir N≠ 0
ΔxLat − Dir N≠ 0
Trang 8Restrict the Nominal Flight Path to
Steady, Level Flight "
• Calculate conditions for trimmed (equilibrium) flight "
– See Flight Dynamics and FLIGHTprogram for a
solution method "
0 = X / m − gsinθN− qNwN
0 = Z / m + g cosθN+ qNuN
VN = cosθ ( N) uN + sinθ ( N) wN
0 = − sinθ ( N) uN+ cosθ ( N) wN
0 = M
Iyy
0 = qN
Trimmed State Vector is constant"
• Specify nominal airspeed (VN) and altitude (hN = –zN)
u w x z q
θ
"
#
$
$
$
$
$
$
$
%
&
' ' ' ' ' ' '
Trim
=
uTrim
wTrim
VN( t − t0)
zN
0
θTrim
"
#
$
$
$
$
$
$
$
$
%
&
' ' ' ' ' ' ' '
Small Perturbation Effects are
Level Flight "
• Assume the airplane is symmetric and its nominal path
is steady, level flight"
– Small longitudinal and lateral-directional perturbations are approximately uncoupled from each other "
– (12 x 12) system is "
• block diagonal"
• constant, i.e., linear, time-invariant (LTI)"
• decoupled into two separate (6 x 6) systems "
F = FLon 0
0 FLat−Dir
"
#
$
$
%
&
'
0 GLat−Dir
"
#
$
$
%
&
'
0 LLat−Dir
"
#
$
$
%
&
' '
Δx Lon (t) = F Lon Δx Lon (t) + G Lon Δu Lon (t) + L Lon Δw Lon (t)
ΔxLon =
Δx1
Δx2
Δx3
Δx4
Δx5
Δx6
"
#
$
$
$
$
$
$
$
$
%
&
'
'
'
'
'
'
'
'
Lon
=
Δu Δw Δx Δz Δq
Δθ
"
#
$
$
$
$
$
$
$
%
&
' ' ' ' ' ' '
Perturbation Model"
ΔuLon=
ΔδT
Δδ E
Δδ F
#
$
%
%
%
&
'
( ( (
ΔwLon=
Δuwind
Δwwind
Δqwind
"
#
$
$
$
%
&
' ' '
Dynamic Equation"
State Vector"
Control "
Vector"
Disturbance"
Vector"
(6 x 6) LTI Lateral-Directional
Perturbation Model"
ΔxLat − Dir(t) = FLat − DirΔxLat − Dir(t) + GLat − DirΔuLat − Dir(t) + LLat − DirΔwLat − Dir(t)
ΔxLat − Dir=
Δx1
Δx2
Δx3
Δx4
Δx5
Δx6
#
$
%
%
%
%
%
%
%
%
&
'
( ( ( ( ( ( ( (
Lat − Dir
=
Δv Δy Δp Δr
Δφ Δψ
#
$
%
%
%
%
%
%
%
%
&
'
( ( ( ( ( ( ( (
ΔuLat − Dir=
Δδ A
Δδ R ΔδSF
$
%
&
&
&
' (
) ) )
ΔwLon=
Δvwind
Δpwind
Δrwind
"
#
$
$
$
%
&
' ' '
Dynamic Equation"
State Vector"
Control "
Vector"
Disturbance" Vector"
Trang 9Frequency Domain
Description of LTI
System Dynamics
Fourier Transform of a Scalar Variable "
F Δx(t) [ ] = Δx( jω ) = Δx(t)e− jωt
−∞
∞
∫ dt, ω = frequency, rad / s
Δx(t) : real variable
Δx( j ω ) : complex variable
= a( ω )+ jb( ω )
= A( ω )e jϕ (ω )
A : amplitude
ϕ : phase angle
jω : Imaginary operator, rad/s
Fourier Transform of a
Scalar Variable "
Δx(t)
Δx( jω ) = a(ω ) + jb(ω )
Laplace Transform of
a Scalar Variable "
• Laplace transformation from time domain to frequency domain !
0
∞
s = σ + jω
= Laplace (complex) operator, rad/s
Δx(t) : real variable Δx(s) : complex variable
= a(s)+ jb(s)
= A(s)ejϕ(s )
Trang 10Laplace Transformation is a
Linear Operation "
L Δx [ 1 (t)+ Δx 2 (t) ] = L Δx [ 1 (t) ] + L Δx [ 2 (t) ] = Δx 1 (s)+ Δx 2 (s)
• Sum of Laplace transforms !
• Multiplication by a constant !
Laplace Transforms of
Vectors and Matrices "
L Δx(t) [ ] = Δx(s) =
Δx1(s)
Δx2(s)
"
#
$
$
$
%
&
' ' '
L A(t) [ ] = A(s) =
a11(s) a12(s)
a21(s) a22(s)
!
"
#
#
#
$
%
&
&
&
Laplace Transform of
a Dynamic System "
Δx(t) = F Δx(t) + G Δu(t) + LΔw(t)
• System equation !
sΔx(s) − Δx(0) = F Δx(s) + GΔ u(s) + LΔw(s)
dim(Δx) = (n × 1) dim(Δu) = (m × 1) dim(Δw) = (s × 1)
Laplace Transform of
a Dynamic System "
dynamic equation!
sΔx(s) − FΔ x(s) = Δx(0) + GΔ u(s)+ LΔw(s)
sI − F
[ ] Δx(s) = Δx(0)+ GΔ u(s)+ LΔw(s)
• F to left, I.C to right!
• Combine terms!
• Multiply both sides by inverse of (sI – F)!