1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Aircraft Flight Dynamics Robert F. Stengel Lecture10 Linearized Equations and Modes of Motion

15 347 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 1,65 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Linearized Equations Robert Stengel, Aircraft Flight Dynamics MAE 331, 2012" – Nominal flight path" – Perturbations about the nominal flight path " – Longitudinal" – Lateral-directi

Trang 1

Linearized Equations 


Robert Stengel, Aircraft Flight Dynamics


MAE 331, 2012"

  Nominal flight path"

  Perturbations about the nominal flight path "

  Longitudinal"

  Lateral-directional "

Copyright 2012 by Robert Stengel All rights reserved For educational use only.!

http://www.princeton.edu/~stengel/MAE331.html !

http://www.princeton.edu/~stengel/FlightDynamics.html !

The Mystery Airplane:

Convair XF-92A (1948)

!   Precursor to F-102, F-106, B-58, and F2Y"

!   M = 1.05 in a dive; under-powered, pre-area rule"

!   Landed at θ = 45°, V = 67 mph (108 km/h)"

!   Violent pitchup during high-speed turns, alleviated by wing fences"

!   Poor high-speed and good low-speed handling qualities "

Nominal and Actual

Flight Paths

Nominal and Actual Trajectories"

•   Nominal (or reference) trajectory and control history"

xN(t), uN(t), wN(t)

•   Actual trajectory perturbed by"

–   Small initial condition variation, Δxo(to) "

–   Small control variation, Δu(t)"

x(t), u(t), w(t)

= x { N(t) + Δx(t), uN(t) + Δu(t),wN(t) + Δw(t) }

x : dynamic state

u : control input

w : disturbance input

Trang 2

Both Paths Satisfy the Dynamic Equations"

•   Dynamic models for the actual and the

nominal problems are the same"

x N (t) = f[x N (t), u N (t), w N (t)], x N ( ) t o given

x(t) = f[x(t),u(t),w(t)], x t ( ) o given

x(t) = xN(t) + Δx(t)

x(t) − xN(t) + Δx(t)

#

$

&%

' ( )%

in t *+o,tf

,-Δx(to) = x(to) − xN(to)

Δu(t) = u(t) − uN(t)

Δw(t) = w(t) − wN(t)

#

$

&%

' ( )%

in t *+o,tf

,-•  Differences in initial

condition and forcing " •  perturb rate of change and the state"

Approximate Neighboring Trajectory as a Linear Perturbation

to the Nominal Trajectory"

x(t) = xN(t) + Δx(t)

f[xN(t), uN(t), wN(t),t] + ∂f

∂f

∂f

•   Approximate the new trajectory as the sum of the nominal path plus a linear perturbation"

xN(t) = f[xN(t), uN(t), wN(t),t]

x(t) = xN(t) + Δx(t) = f[xN(t) + Δx(t),uN(t) + Δu(t),wN(t) + Δw(t),t]

Linearized Equation Approximates

Perturbation Dynamics"

•   Solve for the nominal and perturbation trajectories

separately"

x N (t) = f[x N (t), u N (t), w N (t),t], x N ( ) t o given

Δx(t) ≈f

x=xN (t )

u=uN (t )

w=wN (t )

Δx(t)

$

%

&

&

&

' (

) ) )

+ ∂ f

ux=xN (t )

u=uN (t )

w=wN (t )

Δu(t)

$

%

&

&

&

' (

) ) )

+ ∂ f

wx=xN (t )

u=uN (t )

w=wN (t )

Δw(t)

$

%

&

&

&

' (

) ) )

F(t) Δx(t)+ G(t) Δu(t)+ L(t) Δw(t), Δx t ( )o given

dim(x) = n × 1 dim(u) = m × 1 dim(w) = s × 1

dim(Δx) = n × 1 dim(Δu) = m × 1 dim(Δw) = s × 1

Nominal Equation"

Perturbation Equation"

Sensitivity to Small Perturbations"

•   Sensitivity to state perturbations: stability matrix, F , is square"

∂ x x=xN(t )

u=uN(t )

w=wN(t )

=

∂ f 1

∂ x 1

 ∂ f 1

∂ x n

∂ f n

∂ x 1  ∂ f n

∂ x n

"

#

$

$

$

$

$

%

&

' ' ' ' ' x=x

N(t )

u=uN(t )

w=wN(t )

∂u x = xN(t )

u= uN(t )

w = w (t )

∂w x = xN(t )

u= uN(t )

w = w (t )

•   Sensitivity to control and disturbance perturbations is similar, but matrices, G and L , may not be square"

dim(F) = n × n

Trang 3

•   Linear and nonlinear, varying and

–   Numerical integration ( time domain )"

–   Numerical integration ( time domain )"

–   State transition ( time domain )"

–   Transfer functions ( frequency domain )"

How Is System

Response Calculated?"

Numerical Integration :"

MATLAB Ordinary Differential Equation

•  Explicit Runge-Kutta Algorithm"

•  Numerical Differentiation Formula"

* http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?/access/helpdesk/help/techdoc/ref/ode23.html.!

Shampine, L F and M W Reichelt, "The MATLAB ODE Suite," SIAM Journal on Scientific Computing, Vol 18, 1997, pp 1-22.!

•  Adams-Bashforth-Moulton Algorithm"

•  Modified Rosenbrock Method"

•  Trapezoidal Rule"

•  Trapezoidal Rule w/Back Differentiation"

MATLAB Simulation of Linear and

Nonlinear Dynamic Systems"

•   MATLAB Main Script"

% Nonlinear and Linear Examples"

clear"

tspan = [0 10]; "

xo = [0, 10];"

[t1,x1 = ode23('NonLin',tspan,xo); "

xo = [0, 1];"

[t2,x2] = ode23('NonLin',tspan,xo); "

xo = [0, 10];"

[t3,x3] = "ode23('Lin',tspan,xo);"

xo = [0, 1];"

[t4,x4] = ode23('Lin',tspan,xo);"

"

subplot(2,1,1)"

plot(t1,x1(:,1),'k',t2,x2(:,1),'b',t3,x3(:,1),'r',t4,x4(:,1),'g')"

ylabel('Position'), grid"

subplot(2,1,2)"

plot(t1,x1(:,2),'k',t2,x2(:,2),'b',t3,x3(:,2),'r',t4,x4(:,2),'g')"

xlabel('Time'), ylabel('Rate'), grid"

•   Linear System"

function xdot = Lin(t,x)"

% Linear Ordinary Differential Equation"

% x(1) = Position"

% x(2) = Rate"

xdot = [x(2)"

-10*x(1) - x(2)];"

  Nonlinear System"

function xdot = NonLin(t,x)"

% Nonlinear Ordinary Differential Equation"

% x(1) = Position"

% x(2) = Rate ""

xdot = [x(2)"

˙

x 1(t) = x2(t)

˙

x 2(t) = −10x1(t) − x2(t)

˙

x 1(t) = x2(t)

˙

x 2(t) = −10x1(t) + 0.8x1(t) − x2(t)

Comparison of Damped

3

(t) − x2(t)

Linear plus Stiffening Cubic Spring"

Linear plus Weakening Cubic Spring"

3

(t) − x2(t)

Displacement"

Spring" Damper"

Displacement"

Rate of Change"

Trang 4

Linear and Stiffening

Cubic Springs: Small and Large Initial Conditions"

•   Linear and nonlinear responses are indistinguishable with small initial condition"

Linear and Weakening

Cubic Springs: Small and Large Initial Conditions"

Linear, Time-Varying (LTV)

Approximation of

Perturbation Dynamics

Stiffening Linear-Cubic Spring Example"

!   Nonlinear, time-invariant (NTI) equation"

x 1 (t) = f 1 = x 2 (t)

x 2 (t) = f 2 = −10x 1 (t) − 10x 1 3 (t) − x 2 (t)

!   Integrate equations to produce nominal path"

x1N(0)

x2N(0)

!

"

#

#

$

%

&

f1N

f2N

!

"

#

#

$

%

&

0

t f

x2N(t)

!

"

#

#

$

%

&

!   Analytical evaluation of partial derivatives"

∂ f1

∂ x1

= 0; ∂ f1

∂ x2

= 1

∂ f2

∂ x1

= −10 − 30x1

N

2(t) ; ∂ f2

∂ x2

= −1

u = 0;f1∂ w = 0

u = 0;f2∂ w = 0

Trang 5

Nominal (NTI) and Perturbation

xN(t) = f[xN(t)], xN(0) given

x1N(t) = x2N(t)

x2

N(t) = −10x1N(t) − 10x1N

3

(t) − x2N(t)

Δx(t) = F(t)Δx(t), Δx(0) given

Δx1(t)

Δx2(t)

"

#

$

$

%

&

'

' =

− 10 + 30x12N

(t)

"

#

$

$

%

&

' '

Δx1(t)

Δx2(t)

"

#

$

$

%

&

' '

x1

N(0)

x2

N(0)

!

"

#

#

$

%

&

& =

0 9

!

"

%

&

!   Nonlinear, time-invariant (NTI) nominal equation"

!   Perturbations approximated by linear, time-varying (LTV) equation"

Δx1(0)

Δx2(0)

"

#

$

$

%

&

' ' =

0 1

"

#

&

'

Example"

Example"

Comparison of Approximate and Exact Solutions"

xN(t)

Δx(t)

xN(t)+ Δx(t) x(t)

Initial Conditions

x2N(0) = 9

x2N(t)+ Δx2(t) = 10

x2(t) = 10

xN(t)

Δx(t)

xN(t) + Δx(t)

x(t)

Suppose Nominal Initial

Condition is Zero"

•   Nominal solution remains at equilibrium"

•   Perturbation equation is linear and time-invariant (LTI)"

"

#

$

$

%

&

'

"

#

$

$

%

&

' '

"

#

$

$

%

&

' '

Separation of the Equations of Motion into Longitudinal and

Lateral-Directional Sets

Trang 6

Rigid-Body Equations of Motion (Scalar Notation)"

Translational Position "

•  Rate of change of

Angular Position"

Translational Velocity "

•  Rate of change of

Angular Velocity

(Ixy = I yz = 0) "

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

!

"

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

$

%

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

=

u v w x y z p q r

φ θ ψ

!

"

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

$

%

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

State Vector"

u = X / m − gsinθ + rv − qw

v = Y / m + gsinφ cosθ − ru + pw

w = Z / m + g cosφ cosθ + qu − pv

x I= cosθ cosψ( )u + − cosφ sinψ + sinφ sinθ cosψ( )v + sinφ sinψ + cosφ sinθ cosψ( )w

y I= cosθ sinψ( )u + cosφ cosψ + sinφ sinθ sinψ( )v + − sinφ cosψ + cosφ sinθ sinψ( )w

z I= − sinθ( )u + sinφ cosθ( )v + cosφ cosθ( )w

φ = p + qsinφ + r cosφ ( ) tanθ

θ = qcosφ − rsinφ

ψ = q sinφ + r cosφ ( ) secθ

p = I zz L + I xz N − I xz(I yy − I xx − I zz)p + I xz

2

+ I zz(I zz − I yy)

" $% r

2

( )

q = M − I(xx − I zz)pr − I xz p2

− r2

( )

" $% ÷ I yy

r = I xz L + I xx N − I xz(I yy − I xx − I zz)r + I xz

2

+ I xx(I xx − I yy)

" $% p

2

( )

Reorder the State Vector"

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

!

"

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

$

%

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&new

xLat−Dir

!

"

#

#

$

%

&

& =

u w x z q

θ

v y p r

φ ψ

!

"

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

$

%

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

the state are

longitudinal variables"

"

Second six elements of the state are lateral-directional variables"

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

!

"

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

$

%

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

=

u v w x y z p q r

φ θ ψ

!

"

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

$

%

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

Longitudinal Equations of Motion "

xI= cosθ cosψ ( ) u + − cosφ sinψ + sinφ sinθ cosψ ( ) v + sinφ sinψ + cosφ sinθ cosψ ( ) w = x3= f3

q = M − I (xx− Izz) pr − Ixz p2

− r2

x Lon (t) = f[x Lon (t), u Lon (t), w Lon (t)]

yI= cosθ sinψ ( ) u + cosφ cosψ + sinφ sinθ sinψ ( ) v + − sinφ cosψ + cosφ sinθ sinψ ( ) w = x8= f8

p = IzzL + IxzN − Ixz( Iyy− Ixx− Izz) p + Ixz

2

+ Izz( Izz− Iyy)

2

( ) = x9= f9

r = IxzL + IxxN − Ixz( Iyy− Ixx− Izz) r + Ixz

2

+ Ixx( Ixx− Iyy)

( p

2

( ) = x10= f10

Lateral-Directional Equations of Motion "

•   Dynamics of position, velocity, angle, and angular rate out of the vertical plane "

xLD(t) = f[xLD(t), uLD(t), wLD(t)]

Trang 7

Sensitivity to Small Motions "

F(t) =

f1

∂ 1

f1

∂ 2

f1

∂ 12

f2

∂ 1

f2

∂ 2 ∂ f2

∂ 12

f12

∂ 1

f12

∂ 2

f12

∂ 12

"

#

$

$

$

$

$

$

$

$

%

&

' ' ' ' ' ' ' '

=

u

wu

∂ψ

w

ww

∂ψ

∂ ψ 

ψ

ψ

∂ψ

"

#

$

$

$

$

$

$

$

%

&

' ' ' ' ' ' '

•   Four (6 x 6) blocks distinguish longitudinal and lateral-directional effects "

F = FLon FLat−Dir Lon

FLon Lat−Dir FLat−Dir

"

#

$

$

%

&

' '

Effects of longitudinal perturbations

on longitudinal motion"

Effects of longitudinal perturbations

on lateral-directional motion"

Effects of lateral-directional perturbations on longitudinal motion"

Effects of lateral-directional perturbations

on lateral-directional motion"

Sensitivity to Control Inputs"

G = GLon GLat−Dir

Lon

GLon Lat−Dir

GLat−Dir

"

#

$

$

%

&

' '

Effects of longitudinal controls on longitudinal motion"

Effects of longitudinal controls on lateral-directional motion"

Effects of lateral-directional controls

on longitudinal motion"

Effects of lateral-directional controls on lateral-directional motion"

u(t) =

δE(t)

δT (t) δF(t) δA(t) δR(t) δSF(t)

"

#

$

$

$

$

$

$

$

$

%

&

' ' ' ' ' ' ' '

Elevator, deg or rad Throttle, % Flaps, deg or rad Ailerons, deg or rad Rudder, deg or rad Side Force Panels, deg or rad

Δu(t) =

ΔδE(t) ΔδT (t) ΔδF(t) ΔδA(t) ΔδR(t) ΔδSF(t)

#

$

%

%

%

%

%

%

%

%

&

'

( ( ( ( ( ( ( (

Decoupling Approximation

for Small Perturbations

from Steady, Level Flight

Restrict the Nominal Flight Path

longitudinal equations

lateral-directional motions

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

!

"

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

$

%

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&N

= xLon

xLat−Dir

!

"

#

#

$

%

&

&

N

=

uN

wN

xN

zN

qN

θN

0 0 0 0 0 0

!

"

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

$

%

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

uN= X / m − g sinθN− qNwN

wN = Z / m + g cosθN+ qNuN

xI

N = cosθ ( N) uN+ sinθ ( N) wN

zI N = − sinθ ( N) uN+ cosθ ( N) wN

qN= M

Iyy

θN= qN

xLat − Dir N = 0

xLat − Dir

N = 0

Nominal State Vector"

Lateral-directional perturbations need not be zero"

ΔxLat − Dir N≠ 0

ΔxLat − Dir N≠ 0

Trang 8

Restrict the Nominal Flight Path to

Steady, Level Flight "

•  Calculate conditions for trimmed (equilibrium) flight "

–  See Flight Dynamics and FLIGHTprogram for a

solution method "

0 = X / m − gsinθN− qNwN

0 = Z / m + g cosθN+ qNuN

VN = cosθ ( N) uN + sinθ ( N) wN

0 = − sinθ ( N) uN+ cosθ ( N) wN

0 = M

Iyy

0 = qN

Trimmed State Vector is constant"

•  Specify nominal airspeed (VN) and altitude (hN = –zN)

u w x z q

θ

"

#

$

$

$

$

$

$

$

%

&

' ' ' ' ' ' '

Trim

=

uTrim

wTrim

VN( t − t0)

zN

0

θTrim

"

#

$

$

$

$

$

$

$

$

%

&

' ' ' ' ' ' ' '

Small Perturbation Effects are

Level Flight "

•   Assume the airplane is symmetric and its nominal path

is steady, level flight"

–   Small longitudinal and lateral-directional perturbations are approximately uncoupled from each other "

–   (12 x 12) system is "

  block diagonal"

  constant, i.e., linear, time-invariant (LTI)"

  decoupled into two separate (6 x 6) systems "

F = FLon 0

0 FLat−Dir

"

#

$

$

%

&

'

0 GLat−Dir

"

#

$

$

%

&

'

0 LLat−Dir

"

#

$

$

%

&

' '

Δx Lon (t) = F Lon Δx Lon (t) + G Lon Δu Lon (t) + L Lon Δw Lon (t)

ΔxLon =

Δx1

Δx2

Δx3

Δx4

Δx5

Δx6

"

#

$

$

$

$

$

$

$

$

%

&

'

'

'

'

'

'

'

'

Lon

=

Δu Δw Δx Δz Δq

Δθ

"

#

$

$

$

$

$

$

$

%

&

' ' ' ' ' ' '

Perturbation Model"

ΔuLon=

ΔδT

Δδ E

Δδ F

#

$

%

%

%

&

'

( ( (

ΔwLon=

Δuwind

Δwwind

Δqwind

"

#

$

$

$

%

&

' ' '

Dynamic Equation"

State Vector"

Control "

Vector"

Disturbance"

Vector"

(6 x 6) LTI Lateral-Directional

Perturbation Model"

ΔxLat − Dir(t) = FLat − DirΔxLat − Dir(t) + GLat − DirΔuLat − Dir(t) + LLat − DirΔwLat − Dir(t)

ΔxLat − Dir=

Δx1

Δx2

Δx3

Δx4

Δx5

Δx6

#

$

%

%

%

%

%

%

%

%

&

'

( ( ( ( ( ( ( (

Lat − Dir

=

Δv Δy Δp Δr

Δφ Δψ

#

$

%

%

%

%

%

%

%

%

&

'

( ( ( ( ( ( ( (

ΔuLat − Dir=

Δδ A

Δδ R ΔδSF

$

%

&

&

&

' (

) ) )

ΔwLon=

Δvwind

Δpwind

Δrwind

"

#

$

$

$

%

&

' ' '

Dynamic Equation"

State Vector"

Control "

Vector"

Disturbance" Vector"

Trang 9

Frequency Domain

Description of LTI

System Dynamics

Fourier Transform of a Scalar Variable "

F Δx(t) [ ] = Δx( jω ) = Δx(t)e− jωt

−∞

dt, ω = frequency, rad / s

Δx(t) : real variable

Δx( j ω ) : complex variable

= a( ω )+ jb( ω )

= A( ω )e jϕ (ω )

A : amplitude

ϕ : phase angle

jω : Imaginary operator, rad/s

Fourier Transform of a

Scalar Variable "

Δx(t)

Δx( jω ) = a(ω ) + jb(ω )

Laplace Transform of

a Scalar Variable "

•   Laplace transformation from time domain to frequency domain !

0

s = σ + jω

= Laplace (complex) operator, rad/s

Δx(t) : real variable Δx(s) : complex variable

= a(s)+ jb(s)

= A(s)ejϕ(s )

Trang 10

Laplace Transformation is a

Linear Operation "

L Δx [ 1 (t)+ Δx 2 (t) ] = L Δx [ 1 (t) ] + L Δx [ 2 (t) ] = Δx 1 (s)+ Δx 2 (s)

•   Sum of Laplace transforms !

•   Multiplication by a constant !

Laplace Transforms of

Vectors and Matrices "

L Δx(t) [ ] = Δx(s) =

Δx1(s)

Δx2(s)

"

#

$

$

$

%

&

' ' '

L A(t) [ ] = A(s) =

a11(s) a12(s)

a21(s) a22(s)

!

"

#

#

#

$

%

&

&

&

Laplace Transform of

a Dynamic System "

Δx(t) = F Δx(t) + G Δu(t) + LΔw(t)

•   System equation !

sΔx(s) − Δx(0) = F Δx(s) + GΔ u(s) + LΔw(s)

dim(Δx) = (n × 1) dim(Δu) = (m × 1) dim(Δw) = (s × 1)

Laplace Transform of

a Dynamic System "

dynamic equation!

sΔx(s) − FΔ x(s) = Δx(0) + GΔ u(s)+ LΔw(s)

sI − F

[ ] Δx(s) = Δx(0)+ GΔ u(s)+ LΔw(s)

•   F to left, I.C to right!

•   Combine terms!

•   Multiply both sides by inverse of (sI – F)!

Ngày đăng: 04/07/2014, 19:25

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm