Aircraft Equations of Motion - 2 Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2012 " • Rotating frames of reference" • Combined equations of motion" • FLIGHT 6-DOF simulation pr
Trang 1Aircraft Equations of Motion - 2
Robert Stengel, Aircraft Flight Dynamics, MAE 331,
2012 "
• Rotating frames of reference"
• Combined equations of
motion"
• FLIGHT 6-DOF simulation
program"
Copyright 2012 by Robert Stengel All rights reserved For educational use only.!
http://www.princeton.edu/~stengel/MAE331.html !
http://www.princeton.edu/~stengel/FlightDynamics.html !
Euler Angle Rates
Euler-Angle Rates and Body-Axis Rates"
Body-axis
angular rate
vector
( orthogonal ) " ωB=
ωx
ωy
ωz
"
#
$
$
$
$
%
&
' ' ' 'B
=
p q r
"
#
$
$
$
%
&
' ' '
Euler-angle
rate vector "
non-orthogonal vector
φ θ ψ
%
&
' ' ' (
)
*
*
*
Θ =
φ
θ
ψ
%
&
' ' ' (
)
*
*
*≠
ωx
ωy
ωz
%
&
' ' ' '
(
)
*
*
*
*I
Relationship Between Euler-Angle Rates and Body-Axis Rates"
• is measured in the Inertial Frame"
• is measured in Intermediate Frame #1"
• is measured in Intermediate Frame #2"
• Inverse transformation [(.) -1 ≠ (.) T ] "
€
˙
φ
€
˙
θ
€
˙
q r
!
"
#
#
#
$
%
&
&
&
= I3
φ 0 0
!
"
#
#
#
$
%
&
&
&+ H2
0
θ 0
!
"
#
#
#
$
%
&
&
&
+ H2H1
0 0
ψ
!
"
#
#
#
$
%
&
&
&
p q r
!
"
#
#
#
$
%
&
&
&
=
0 cosφ sinφ cosθ
0 −sinφ cosφ cosθ
!
"
#
#
#
$
%
&
&
&
φ
θ
ψ
!
"
#
#
#
$
%
&
&
&
=LI
BΘ
φ
θ
ψ
$
%
&
&
&
'
(
) ) )=
1 sinφtanθ cosφtanθ
0 cosφ −sinφ
0 sinφsecθ cosφsecθ
$
%
&
&
&
'
(
) ) )
p q r
$
%
&
&
&
'
(
) ) )=
LI B
ωB
"Can the inversion become singular?"
" What does this mean? "
• which is "
Trang 2Euler-Angle Rates and Body-Axis Rates" Avoiding the Singularity at θ = ±90°"
! Don’t use Euler angles as primary
definition of angular attitude"
! Alternatives to Euler angles"
- Direction cosine (rotation) matrix"
- Quaternions"
! Propagation of rotation matrix
(9 parameters)"
- From previous lecture"
HI B( )t = − ωB( )t HI B( )t = −
0 −r t( ) q t( )
−q t( ) p t( ) 0 t( )
#
$
%
%
%
%
&
'
( ( ( (
B
HI B( )t ; HI B( )0 = HI
B
φ0,θ0,ψ0
Consequently"
Avoiding the Singularity at θ = ±90°"
! Propagation of quaternion vector "
o see Flight Dynamics for details"
e1
e2
e3
e4
!
"
#
#
#
#
#
$
%
&
&
&
&
&
=
Rotation angle, rad
x-component of rotation axis y-component of rotation axis z-component of rotation axis
!
"
#
#
#
#
#
$
%
&
&
&
&
&
! Quaternion vector: single rotation from
e t( )=
e1( )t
e2( )t
e3( )t
e4( )t
!
"
#
#
#
#
#
#
$
%
&
&
&
&
&
&
=
0 −r t( ) −q t( ) − p t( )
r t( ) 0 − p t( ) q t( )
p t( ) −q t( ) r t( ) 0
!
"
#
#
#
#
#
#
$
%
&
&
&
&
&
&
e1( )t
e2( )t
e3( )t
e4( )t
!
"
#
#
#
#
#
#
$
%
&
&
&
&
&
&
= Q t( )e t( ); e 0( )= e(φ0,θ0,ψ0)
Rigid-Body Equations of Motion
Trang 3Point-Mass Dynamics"
• Inertial rate of change of translational position"
• Body-axis rate of change of translational velocity "
– Identical to angular-momentum transformation "
rI = vI = HB IvB
vI = 1
m FI
vB = HI BvI − ωBvB = 1
m HI
BFI − ωBvB
= 1
m FB− ωBvB
FB=
X Y Z
!
"
#
#
#
$
%
&
&
&B
=
CXqS
CYqS
CZqS
!
"
#
#
#
$
%
&
&
&
vB=
u v w
!
"
#
#
#
$
%
&
&
vB( )t = 1
m t( )FB( )t + HI B( )t gI− ωB( )t vB( )t
ΘI( ) t = LI B( ) t ωB( ) t
ωB( )t = I B
−1( )t #$MB( )t − ωB( )t I B( )t ωB( )t%&
• Rate of change of Translational Position "
• Rate of change of Angular Position "
• Rate of change of Translational Velocity "
• Rate of change of Angular Velocity "
rI=
x y z
!
"
#
#
#
$
%
&
&
&
I
ΘI=
φ θ ψ
%
&
' ' ' (
)
*
*
*
I
vB=
u v w
!
"
#
#
#
$
%
&
&
&B
ωB=
p q r
"
#
$
$
%
&
' '
B
Position "
Position "
Velocity"
Velocity "
Rigid-Body Equations of Motion"
(Euler Angles)"
Aircraft Characteristics Expressed in Body Frame
of Reference"
I B=
I xx −I xy −I xz
−I xy I yy −I yz
−I xz −I yz I zz
"
#
$
$
$
$
%
&
' ' ' '
FB=
X aero + X thrust
Y aero + Y thrust
Z aero + Z thrust
!
"
#
#
#
$
%
&
&
&
B
=
C X aero + C X thrust
C Y aero + C Y thrust
C Z aero + C Z
thrust
!
"
#
#
#
#
$
%
&
&
&
&
B
1
2ρV
2
S =
C X
C Y
C Z
!
"
#
#
#
$
%
&
&
&
B
q S
Aerodynamic
and thrust
force "
Aerodynamic and
thrust moment "
Inertia
matrix "
Reference Lengths
b = wing span
c = mean aerodynamic chord
MB=
L aero + L thrust
M aero + M thrust
N aero + N thrust
!
"
#
#
#
$
%
&
&
&
B
=
!
"
#
#
#
#
#
$
%
&
&
&
&
&
B
1
2ρV
2
S =
C l b
C m c
C n b
!
"
#
#
#
$
%
&
&
&
B
q S
Rigid-Body Equations of Motion:
Position "
x I= cos( θcosψ )u+ − cos( φsinψ+ sinφsinθcosψ )v+ sin( φsinψ+ cosφsinθcosψ )w
y I= cos( θsinψ )u+ cos( φcosψ+ sinφsinθsinψ )v+ − sin( φcosψ+ cosφsinθsinψ )w
z I= − sin( θ )u+ sin( φcosθ )v+ cos( φcosθ )w
φ = p + ( q sinφ + r cosφ ) tanθ
θ = q cosφ − r sinφ
ψ = ( q sinφ + r cosφ ) secθ
Trang 4Rigid-Body Equations of Motion:
Rate "
u = X / m − gsinθ + rv − qw
v = Y / m + gsinφ cosθ − ru + pw
w = Z / m + g cosφ cosθ + qu − pv
p = I ( zzL + IxzN − I { xz( Iyy− Ixx− Izz) p + I " xz2 + Izz( Izz− Iyy) $ } q ) IxxIzz− Ixz2
q = 1
Iyy M − Ixx ( − Izz ) pr − Ixz p2
− r2
r = I ( xzL + IxxN − I { xz( Iyy− Ixx− Izz) r + I " xz2 + Ixx( Ixx− Iyy) $ p } q ) ( IxxIzz− Ixz2)
Mirror symmetry, I xz ≠ 0#
FLIGHT - Computer Program to Solve the 6-DOF Equations of Motion
http://www.princeton.edu/~stengel/FlightDynamics.html !
FLIGHT - MATLAB Program"
http://www.princeton.edu/~stengel/FlightDynamics.html !
FLIGHT - MATLAB Program"
Trang 5Examples from FLIGHT
Longitudinal Transient
Bizjet, M = 0.3, Altitude = 3,052 m!
perturbations do not induce lateral-directional motions "
Transient Response
Lateral-Directional Response" Longitudinal Response"
Bizjet, M = 0.3, Altitude = 3,052 m! • For a symmetric aircraft,
induce longitudinal motions "
Transient Response to
Lateral-Directional Response" Longitudinal Response"
Bizjet, M = 0.3, Altitude = 3,052 m!
Trang 6Crossplot of Transient
Response to Initial Yaw Rate"
Bizjet, M = 0.3, Altitude = 3,052 m!
Longitudinal-Lateral-Directional Coupling"
Alternative Reference
Frames
Velocity Orientation in an Inertial
Frame of Reference"
Polar Coordinates" Projected on a Sphere"
Body Orientation with Respect
to an Inertial Frame"
Trang 7Relationship of Inertial Axes
independent of
velocity vector"
– Euler angles"
– Rotation matrix "
vx
vy
vz
!
"
#
#
#
#
$
%
&
&
&
&
= HB I
u v w
!
"
#
#
#
$
%
&
&
&
u v w
!
"
#
#
#
$
%
&
&
&
vx
vy
vz
!
"
#
#
#
#
$
%
&
&
&
&
Velocity-Vector Components
of an Aircraft"
Velocity Orientation with Respect
to the Body Frame"
Polar Coordinates" Projected on a Sphere"
frame"
about the velocity vector "
V
ξ γ
#
$
%
%
%
&
'
( ( (
=
v x + v y + v z
sin−1 v y / v( x + v y)1/2
#
sin−1
−v z / V
#
$
%
%
%
%
%
&
'
( ( ( ( (
vx
vy
vz
!
"
#
#
#
#
$
%
&
&
&
&I
=
V cosγ cosξ
V cosγ sinξ
−V sinγ
!
"
#
#
#
$
%
&
&
&
Relationship of Inertial Axes
Trang 8Relationship of Body Axes
the inertial frame "
u
v
w
!
"
#
#
#
$
%
&
&
&
=
V cosα cos β
V sin β
V sinα cos β
!
"
#
#
#
$
%
&
&
&
V
β α
#
$
%
%
%
&
'
( ( (
=
u2
+ v2
+ w2
sin−1
v / V
( )
tan−1(w / u)
#
$
%
%
%
%
&
'
( ( ( (
Angles Projected
on the Unit Sphere"
€
α : angle of attack
β : sideslip angle
γ : vertical flight path angle
ξ : horizontal flight path angle
ψ : yaw angle
θ : pitch angle
φ : roll angle (about body x − axis)
µ : bank angle (about velocity vector)
• Origin is airplane s center
of mass"
Alternative Frames of Reference"
• Orthonormal transformations connect all reference frames" Next Time:
Linearization and Modes of
Motion
Reading Flight Dynamics, 234-242, 255-266, 274-297, 321-330 Virtual Textbook, Part 10
Trang 9Supplemental Material
r I = H B I v B
vB= 1
m FB+ HI
BgI − ωBvB
ωB = IB−1( MB− ωBIBωB)
• Rate of change of Translational Position "
• Rate of change of Rotation Matrix "
• Rate of change of Translational Velocity "
• Rate of change of Angular Velocity "
rI=
x y z
!
"
#
#
#
$
%
&
&
&
I
ΘI = fcn H I B
( )
vB=
u v w
!
"
#
#
#
$
%
&
&
&B
ωB=
p q r
"
#
$
$
%
&
' '
B
Position "
Position "
Velocity"
Velocity "
Rigid-Body Equations of Motion" (Attitude from Rotation Matrix)"
HI B
= − ωBHI B
r I = H B I v B
vB= 1
m FB+ HI
BgI − ωBvB
ωB = IB−1( MB− ωBIBωB)
• Rate of change of
Translational Position "
• Rate of change of
Rotation Matrix "
• Rate of change of
Translational Velocity "
• Rate of change of
Angular Velocity "
rI=
x y z
!
"
#
#
#
$
%
&
&
&
I
ΘI = fcn H I
B( )e
"# $%
vB=
u v w
!
"
#
#
#
$
%
&
&
&B
ωB=
p q r
"
#
$
$
%
&
' '
B
Position "
Position "
Velocity"
Velocity "
Rigid-Body Equations of Motion"
(Attitude from Quaternion Vector)"
e = Qe