1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Aircraft Flight Dynamics Robert F. Stengel Lecture8 Aircraft Equations of Motion 1

9 217 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 645,09 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

How Do We Get Rid of dI/dt in the Angular Momentum Equation?" • Dynamic equation in a body-referenced frame " – Inertial properties of a constant-mass, rigid body are unchanging in a b

Trang 1

Aircraft Equations of Motion - 1


Robert Stengel, Aircraft Flight Dynamics, 


MAE 331, 2012"

•   6 degrees of freedom"

•   Angular kinematics"

•   Euler angles"

•   Rotation matrix"

•   Angular momentum"

•   Inertia matrix"

Copyright 2012 by Robert Stengel All rights reserved For educational use only.!

http://www.princeton.edu/~stengel/MAE331.html ! http://www.princeton.edu/~stengel/FlightDynamics.html !

Lockheed F-104!

  Nonlinear equations of motion "

–   Compute exact flight paths and motions"

•   Simulate flight motions"

•   Optimize flight paths"

•   Predict performance"

–   Provide basis for approximate solutions"

  Linear equations of motion "

–   Simplify computation of flight paths and solutions"

–   Define modes of motion"

–   Provide basis for control system design and flying qualities analysis "

What Use are the Equations of Motion?"

dx(t)

dt = f x(t), u(t), w(t), p(t),t[ ]

dx(t)

dt = F x(t) + G u(t) + L w(t)

Translational Position

Cartesian Frames of Reference"

•   Two reference frames of interest"

–   I: Inertial frame (fixed to inertial space)"

–   B: Body frame (fixed to body)"

Common convention (z up) Aircraft convention (z down)"

•   Translation"

–   Relative linear positions of origins"

•   Rotation "

–   Orientation of the body frame with respect to the inertial frame "

Trang 2

Measurement of Position in

Alternative Frames - 1"

•   Two reference frames of interest"

  I: Inertial frame (fixed to inertial

space)"

  B: Body frame (fixed to body)"

•   Differences in frame orientations must

be taken into account in adding vector

components"

r =

x

y

z

!

"

#

#

#

$

%

&

&

&

rparticle= rorigin+ Δrw.r.t origin

Inertial-axis view "

Body-axis view "

Euler Angles Measure the Orientation of One Frame with Respect to the Other"

•  Conventional sequence of rotations from inertial to body frame"

–  Each rotation is about a single axis"

–  Right-hand rule "

–   Yaw, then pitch, then roll"

–  These are called Euler Angles "

Yaw rotation (ψ) about z I" Pitch rotation (θ) about y 1" Roll rotation (ϕ) about x 2"

•  Other sequences of 3 rotations can be chosen; however, once sequence is chosen, it must be retained "

Effects of Rotation on Vector Transformation

from Inertial to Body Frame of Reference"

Yaw rotation (ψ) about z I – Intermediate Frame 1"

Pitch rotation (θ) about y 1 – Intermediate Frame 2"

Roll rotation (ϕ) about x 2 - Body Frame"

x

y

z

!

"

#

#

#

$

%

&

&

&

1

=

cosψ sinψ 0

−sinψ cosψ 0

!

"

#

#

#

$

%

&

&

&

x y z

!

"

#

#

#

$

%

&

&

&

I

=

x I cosψ + y Isinψ

−x I sinψ + y Icosψ

z I

!

"

#

#

#

$

%

&

&

&

; r1= HI

1

rI

x

y

z

!

"

#

#

#

$

%

&

&

&

2

=

cosθ 0 −sinθ

!

"

#

#

#

$

%

&

&

&

x y z

!

"

#

#

#

$

%

&

&

&

1

2r1= H1

2H1I

!" $%rI= HI

2rI

x

y

z

!

"

#

#

#

$

%

&

&

&

=

0 cos φ sin φ

0 −sin φ cos φ

!

"

#

#

#

$

%

&

&

&

x y z

!

"

#

#

#

$

%

&

&

&

; rB= H2Br2= H2BH12H1I

!" $%rI= HI BrI

The Rotation Matrix"

HI B(φ,θ,ψ) =H2B(φ)H12 (θ )H1I(ψ)

•  The three-angle rotation matrix is

rotation matrices: "

=

0 cosφ sinφ

0 −sinφ cosφ

#

$

%

%

%

&

'

( ( (

cosθ 0 −sinθ

0 1 0 sinθ 0 cosθ

#

$

%

%

%

&

'

( ( (

−sinψ cosψ 0

#

$

%

%

%

&

'

( ( (

=

cosθ cosψ cosθ sinψ −sinθ

−cosφ sinψ + sinφ sinθ cosψ cosφ cosψ + sinφ sinθ sinψ sinφ cosθ sinφ sinψ + cosφ sinθ cosψ −sinφ cosψ + cosφ sinθ sinψ cosφ cosθ

#

$

%

%

%

&

'

( ( (

also called Direction Cosine Matrix (see supplement)"

Trang 3

Properties of the Rotation Matrix"

HI B

(φ,θ,ψ ) = H2B

(φ)H12

(θ)H1I

(ψ )

•  The rotation matrix produces an orthonormal transformation "

rI = rB ; sI = sB

∠(rI, sI) = ∠(rB, sB ) = x deg

r" s"

Properties of the Rotation Matrix"

•   Inverse relationship; interchange sub- and superscripts"

•  Because transformation is orthonormal ,"

–   Inverse = transpose "

–  Rotation matrix is always non-singular "

rB= HI B

rI ; rI = HI

B

rB= HB I

rB

HB I

= HI B

= HI B

= H1

IH12HB2

HB IHI B= HI BHB I= I

Measurement of Position in

Alternative Frames - 2"

Inertial-axis view "

Body-axis view "

Angular Momentum

Trang 4

Angular Momentum

of a Particle!

•   Moment of linear momentum of differential

particles that make up the body"

–  (Differential masses) x components of the

velocity that are perpendicular to the

•   Cross Product: Evaluation of a determinant with unit vectors (i, j, k)

along axes, (x, y, z) and (v x , v y , v z) projections on to axes"

r × v =

dh = r × dmv( )= r × v( m)dm

= r × v( ( o+ ω × r))dm ω =

ωx

ωy

ωz

"

#

$

$

$

$

%

&

' ' ' '

Cross-Product-Equivalent Matrix"

r × v =

i j k

v x v y v z

= yv( z − zv y)i + zv( x − xv z)j + xv( y − yv x)k

=

yv z − zv y

zv x − xv z

xv y − yv x

#

$

%

%

%

%

%

&

'

( ( ( ( (

= rv =

0 −z y

−y x 0

#

$

%

%

%

&

'

( ( (

v x

v y

v z

#

$

%

%

%

%

&

'

( ( ( (

Cross-product-equivalent

"

#

$

$

$

%

&

' ' '

Angular Momentum of the Aircraft"

•   Integrate moment of linear momentum of differential particles over the body"

h = (r × v( o+ ω × r))dm

Body∫ = (r × v)ρ(x, y, z)dx dy dz

zmin

zmax

ymin

ymax

xmin

xmax

h x

h y

h z

%

&

' ' ' '

(

)

*

*

*

*

ρ(x, y, z) = Density of the body

h = (r × vo)dm

Bo dy∫ + (r × ω × r( ))dm

Bo dy

= 0 − (r × r × ω( ))dm

Bo dy

≡ − ( )rr dmω

Bo dy

•   Choose the center of mass as the rotational center"

Supermarine Spitfire!

Location of the Center of Mass"

rcm= 1

m Bodyr dm= rρ(x, y, z)dx dy dz

x cm

y cm

z cm

#

$

%

%

%

&

'

( ( (

Trang 5

The Inertia Matrix

The Inertia Matrix"

Bo dy∫ = − r r dm

Bo dyω = Iω

•   Inertia matrix derives from equal effect of angular rate on all particles of the aircraft"

I = − r r dm

Bo dy∫ = −

#

$

%

%

%

&

'

( ( (

#

$

%

%

%

&

'

( ( (

dm

Bo dy

=

(y2

+ y2)

#

$

%

%

%

%

&

'

( ( ( (

dm

Bo dy

ω =

ωx

ωy

ωz

"

#

$

$

$

%

&

' ' '

where"

Moments and Products of Inertia"

•   Inertia matrix"

I =

"

#

$

$

$

$

%

&

' ' ' '

dm

I xx −I xy −I xz

−I xz −I yz I zz

"

#

$

$

$

$

%

&

' ' ' '

–   Moments of inertia on the diagonal"

–   Products of inertia off the diagonal"

I xx 0 0

0 I yy 0

0 0 I zz

!

"

#

#

#

#

$

%

&

&

&

&

•  If products of inertia are zero , (x, y, z)

are principal axes ->"

•   All rigid bodies have a set of principal

axes "

Ellipsoid of Inertia!

I xx x2+ I yy y2+ I zz z2 = 1

Inertia Matrix of an Aircraft with Mirror Symmetry"

I =

(y2

+ z2) 0 −xz

0 (x2

+ z2

−xz 0 (x2

+ y2 )

"

#

$

$

$

$

%

&

' ' ' '

dm

I xx 0 −I xz

0 I yy 0

−I xz 0 I zz

"

#

$

$

$

$

%

&

' ' ' '

•   Nose high/low product

of inertia, I xz"

North American XB-70!

Nominal Configuration Tips folded, 50% fuel, W = 38,524 lb

x cm @0.218 c

I xx= 1.8 ×10 6 slug-ft 2

I yy= 19.9 ×10 6

slug-ft 2

I xx= 22.1×10 6 slug-ft 2

slug-ft 2

Trang 6

Rate of Change of

Angular Momentum

to Rotational Motion"

•   In inertial frame, rate of change of angular momentum = applied moment (or torque ), M "

dh

dt =

d Iω( )

dI

dω dt

m x

m y

m z

"

#

$

$

$

$

%

&

' ' ' '

•   Angular

not necessarily

aligned "

h = Iω

Angular Momentum and Rate"

Rate of Change of Angular Momentum

Trang 7

How Do We Get Rid of dI/dt in the

Angular Momentum Equation?"

•   Dynamic equation in a body-referenced frame "

–  Inertial properties of a constant-mass, rigid body are

unchanging in a body frame of reference"

–  but a body-referenced frame is non-Newtonian

or non-inertial "

–  Therefore, dynamic equation must be modified for

expression in a rotating frame "

d Iω( )

I ≠ 0

Angular Momentum Expressed in Two Frames of Reference"

are vectors"

–  Expressed in either the inertial

or body frame "

–  Two frames related algebraically

by the rotation matrix"

hB( )t = HI B( )t hI ( )t ; hI( )t = HB I ( )t hB( )t

Vector Derivative Expressed

in a Rotating Frame"

•  Chain Rule"

•   Consequently, the 2 nd term is "

hI= HB IhB+ HB IhB

Effect of ! body-frame rotation!

Rate of change ! expressed in body frame!

hI= HB IhB+ ωI× hI= HB IhB+  ωIhI

ω =

0 −ωz ωy

#

$

%

%

%

%

&

'

( ( ( (

" where the

cross-product-equivalent matrix of angular rate is"

HB I

hB=  ωIhI =  ωIHB I

hB

External Moment Causes Change in Angular Rate"

hB= HI

BhI+ HI B

hI= HI

BhI− ωB × h B

= HI BhI−  ωB h B= HI BMI−  ωB I BωB

= MB−  ωB I BωB

"Positive rotation of Frame B w.r.t

Frame A is a negative rotation of Frame A w.r.t

Frame B"

MI=

!

"

#

#

#

#

$

%

&

&

&

&

B

MI=

!

"

#

#

#

#

$

%

&

&

&

&

=

L M N

!

"

#

#

#

$

%

&

&

&

•   Moment = torque = force x moment arm"

•  In the body frame of reference , the angular momentum change is"

Trang 8

Rate of Change of Body-Referenced

Angular Rate due to External

Moment"

•  For constant body-axis inertia matrix "

hB = HI BhI+ HI BhI = HI BhI − ωB × h B

= HI BhI−  ωB h B= HI BMI −  ωB I BωB

= MB−  ωB I BωB

•   In the body frame of reference, the angular momentum change is"

ωB = I B

−1

•   Consequently, the differential equation for angular rate of change is"

hB = I BωB= MB−  ωB I BωB

Next Time:

Aircraft Equations of

Motion – 2

Reading

Supplemental

Material

Direction Cosine Matrix (also called Rotation Matrix)"

HI B

=

cos δ11 cos δ21 cos δ31

cos δ12 cos δ22 cos δ32

cos δ13 cos δ23 cos δ33

"

#

$

$

$

%

&

' ' '

•   Cosines of angles between each I axis and each B axis"

•   Projections of vector components "

rB = HI BrI

Trang 9

•  Moments and products

of inertia tabulated for geometric shapes with uniform density"

Moments and Products of Inertia"

(Bedford & Fowler) "

•   Construct aircraft moments and products of inertia from components using parallel-axis theorem"

•   Model in Pro/ENGINEER,

etc."

Ngày đăng: 04/07/2014, 19:25

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm