1. Trang chủ
  2. » Khoa Học Tự Nhiên

Handbook of mathematics for engineers and scienteists part 203 ppsx

7 68 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 341,87 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

References for Chapter T10 Barannyk, T., Symmetry and exact solutions for systems of nonlinear reaction-diffusion equations, Proc.. R., Lie symmetries of nonlinear multidimensional react

Trang 1

1382 SYSTEMS OFPARTIALDIFFERENTIALEQUATIONS

Solution:

u m = ϕ m (t)F n (t)

*

θ (x1, , x n , t) +

 g (t, ϕ1, , ϕ

n–1)

F n (t) dt

+ , m=1, , n –1,

u n = F n (t)

*

θ (x1, , x n , t) +

 g (t, ϕ1, , ϕ

n–1)

F n (t) dt

+ ,

F n (t) = exp

*

f n (t, ϕ1, , ϕ n–1) dt

+ ,

where the functions ϕ m = ϕ m (t) are described by the nonlinear system of first-order ordinary

differential equations

ϕ 

m = ϕ m [f m (t, ϕ1, , ϕ n–1) – f n (t, ϕ1, , ϕ n–1)], m=1, , n –1,

and the function θ = θ(x1, , x n , t) satisfies the linear equation

∂θ

∂t = L[θ].

3. ∂u m

∂t = L[u m] +n

k=1

u k f mk



t, u1

u n , , u n–1

u n



, m = 1, , n.

Here, the system involves n2 arbitrary functions f mk = f mk (t, z1, , z n–1) that depend

on n arguments; L is an arbitrary linear differential operator with respect to the spatial variables x1, , x n(of any order in derivatives), whose coefficients can be dependent on

x1, , x n , t It is assumed that L[const] =0

Solution:

u m (x1, , x n , t) = ϕ m (t)F (t)θ(x1, , x n , t), m=1, , n,

F (t) = exp

 n k=1

ϕ k (t)f nk (t, ϕ1, , ϕ n–1) dt

 , ϕ n (t) =1,

where the functions ϕ m = ϕ m (t) are described by the nonlinear system of first-order ordinary

differential equations

ϕ 

m =

n



k=1

ϕ k f mk (t, ϕ1, , ϕ n–1) – ϕ m

n



k=1

ϕ k f nk (t, ϕ1, , ϕ n–1), m=1, , n –1,

and the function θ = θ(x1, , x n , t) satisfies the linear equation

∂θ

∂t = L[θ].

References for Chapter T10

Barannyk, T., Symmetry and exact solutions for systems of nonlinear reaction-diffusion equations, Proc of

Inst of Mathematics of NAS of Ukraine, Vol 43, Part 1, pp 80–85, 2002.

Barannyk, T A and Nikitin, A G., Proc of Inst of Mathematics of NAS of Ukraine, Vol 50, Part 1, pp 34–39,

2004.

Cherniha, R and King, J R., Lie symmetries of nonlinear multidimensional reaction-diffusion systems: I,

J Phys A: Math Gen., Vol 33, pp 267–282, 7839–7841, 2000.

Trang 2

R EFERENCES FOR C HAPTER T10 1383 Cherniha, R and King, J R., Lie symmetries of nonlinear multidimensional reaction-diffusion systems: II,

J Phys A: Math Gen., Vol 36, pp 405–425, 2003.

Nikitin, A G., Group classification of systems of non-linear reaction-diffusion equations with general diffusion

matrix II Diagonal diffusion matrix, From Website arXiv.org (a service of automated e-print archives of

articles), http://arxiv.org/abs/math-ph/0411028.

Nikitin, A G and Wiltshire, R J., Systems of reaction-diffusion equations and their symmetry properties, J.

Math Phys., Vol 42, No 4, pp 1667–1688, 2001.

Polyanin, A D., Exact solutions of nonlinear sets of equations of the theory of heat and mass transfer in

reactive media and mathematical biology, Theor Foundations of Chemical Engineering, Vol 38, No 6,

pp 622–635, 2004.

Polyanin, A D., Exact solutions of nonlinear systems of diffusion equations for reacting media and

mathemat-ical biology, Doklady Mathematics, Vol 71, No 1, pp 148–154, 2005.

Polyanin, A D., Systems of Partial Differential Equations, From Website EqWorld—The World of Mathematical

Equations, http://eqworld.ipmnet.ru/en/solutions/syspde.htm.

Polyanin, A D and Vyaz’mina, E A., New classes of exact solutions to nonlinear systems of reaction-diffusion

equations, Doklady Mathematics, Vol 74, No 1, pp 597–602, 2006.

Polyanin, A D and Zaitsev, V F., Handbook of Exact Solutions for Ordinary Differential Equations, 2nd

Edition, Chapman & Hall/CRC Press, Boca Raton, 2004.

Trang 4

Chapter T11

Integral Equations

T11.1 Linear Equations of the First Kind

with Variable Limit of Integration

1.

 x

a (x – t)y(t) dt = f(x), f (a) = f x  (a) = 0.

Solution: y(x) = f xx  (x).

2.

 x

a (Ax + Bt + C)y(t) dt = f(x), f (a)= 0.

1◦ Solution for B–A:

y (x) = d

dx



(A + B)x + C– A

A+B

 x

a



(A + B)t + C– B

A+B f t  (t) dt



2◦ Solution for B = –A:

y (x) = 1

C

d dx

 exp –A

C x

  x

a exp

A

C t



f 

t (t) dt



3.

 x

a (x – t) n y(t) dt = f (x), n = 1, 2,

It is assumed that the right-hand side of the equation satisfies the conditions f (a) = f x  (a) =

· · · = f x(n)(a) =0

Solution: y(x) = 1

n!f

(n+ 1 )

x (x).

4.

 x

a

x – t y(t) dt = f (x), f (a)= 0.

Solution: y(x) = 2

π

d2

dx2

 x

a

f (t) dt

x – t.

5.

 x

a

y(t) dt

x – t = f (x).

Abel equation.

Solution:

y (x) = 1

π

d dx

 x

a

f (t) dt

x – t =

f (a)

π √

x – a +

1

π

 x

a

f 

t (t) dt

x – t.

1385

Trang 5

1386 INTEGRALEQUATIONS

6.

 x

a (x – t) λ y(t) dt = f (x), f (a)= 0, 0 < λ < 1.

Solution: y(x) = sin(πλ)

πλ

d2

dx2

 x

a

f (t) dt (x – t) λ.

7.

 x

a

y(t) dt

(x – t) λ = f (x), 0 < λ < 1.

Generalized Abel equation.

Solution:

y (x) = sin(πλ)

π

d dx

 x

a

f (t) dt (x – t)1–λ =

sin(πλ)

π



f (a) (x – a)1–λ +

 x

a

f 

t (t) dt

(x – t)1–λ



8.

 x

a e

λ(x–t) y(t) dt = f (x), f (a)= 0.

Solution: y(x) = f x  (x) – λf (x).

9.

 x

a e

λx+βt y(t) dt = f (x), f (a) = 0.

Solution: y(x) = e–(λ+β)x

f 

x (x) – λf (x)



10.

 x

a



e λ(x–t)– 1

y(t) dt = f (x), f (a) = f x  (a) = 0.

Solution: y(x) = λ1f 

xx (x) – f x  (x).

11.

 x

a



e λ(x–t) + b

y(t) dt = f (x), f (a) = 0.

For b = –1, see equation T11.1.10

Solution for b≠–1:

y (x) = f



x (x)

b+1 –

λ

(b +1)2

 x

a exp



λb

b+1(x – t)



f 

t (t) dt.

12.

 x

a



e λ(x–t) – e μ(x–t)

y(t) dt = f (x), f (a) = f x  (a) = 0.

Solution:

y (x) = 1

λ – μ



f 

xx – (λ + μ)f x  + λμf

 , f = f (x).

13.

 x

a

y(t) dt

e λx – e λt = f (x), λ > 0.

Solution: y(x) = λ

π

d dx

 x

a

e λt f (t) dt

e λx – e λt.

Trang 6

T11.1 L INEAR E QUATIONS OF THE F IRST K IND WITH V ARIABLE L IMIT OF I NTEGRATION 1387 14.

 x

a cosh[λ(x – t)]y(t) dt = f(x), f (a)= 0.

Solution: y(x) = f x  (x) – λ2

 x

a f (x) dx.

15.

 x

a

55

cosh[λ(x – t)] – 166

y(t) dt = f (x), f (a) = f x  (a) = f 

xx (x) = 0.

Solution: y(x) = 1

λ2f xxx  (x) – f x  (x).

16.

 x

a

55

cosh[λ(x – t)] + b66

y(t) dt = f (x), f (a)= 0.

For b =0, see equation T11.1.14 For b = –1, see equation T11.1.15

1◦ Solution for b(b +1) <0:

y (x) = f x  (x)

b+1 –

λ2

k (b +1)2

 x

a sin[k(x – t)]f



t (t) dt, where k = λ b –b+1.

2◦ Solution for b(b +1) >0:

y (x) = f x  (x)

b+1 –

λ2

k (b +1)2

 x

a sinh[k(x – t)]f



t (t) dt, where k = λ b+b1.

17.

 x

a cosh 2[λ(x – t)]y(t) dt = f(x), f (a) = 0.

Solution:

y (x) = f x  (x) – 2λ2

k

 x

a sinh[k(x – t)]f



t (t) dt, where k = λ

2

18.

 x

a sinh[λ(x – t)]y(t) dt = f(x), f (a) = f x  (a) = 0.

Solution: y(x) = 1

λ f



xx (x) – λf (x).

19.

 x

a

55

sinh[λ(x – t)] + b66

y(t) dt = f (x), f (a)= 0.

For b =0, see equation T11.1.18

Solution for b≠ 0:

y (x) = 1

b f



x (x) +

 x

a R (x – t)f



t (t) dt,

R (x) = λ

b2 exp

 –λx

2b



λ

2bk sinh(kx) – cosh(kx)



1+4b2

2b .

Trang 7

1388 INTEGRALEQUATIONS

20.

 x

a sinh λ √

x – t

y(t) dt = f (x), f (a) = 0.

Solution: y(x) = 2

πλ

d2

dx2

 x

a

cos λ √

x – t

x – t f (t) dt.

21.

 x

0

ln(x – t)y(t) dt = f(x).

Solution:

y (x) = –

 x

0 f



tt (t) dt

0

(x – t) z eCz

Γ(z +1) dz – f



x(0)

0

x z eCz

Γ(z +1) dz, where C = lim

k→∞



1+ 1

2 +· · · +

1

k+1 – ln k



=0.5772 . is the Euler constant andΓ(z) is

the gamma function

22.

 x

a [ln(x – t) + A]y(t) dt = f(x).

Solution:

y (x) = – d

dx

 x

a ν A (x – t)f (t) dt, ν A (x) =

d dx

0

x z e(A–C)z

Γ(z +1) dz, whereC =0.5772 . is the Euler constant andΓ(z) is the gamma function.

For a =0, the solution can be written in the form

y (x) = –

 x

0 f



tt (t) dt

0

(x – t) z e(A–C)z

Γ(z +1) dz – f



x(0)

0

x z e(A–C)z

Γ(z +1) dz.

23.

 x

a (x – t)

ln(x – t) + A

y(t) dt = f (x), f (a) = 0.

Solution:

y (x) = – d2

dx2

 x

a ν A (x – t)f (t) dt, ν A (x) =

d dx

0

x z e(A–C)z

Γ(z +1) dz, whereC =0.5772 . is the Euler constant andΓ(z) is the gamma function.

24.

 x

a cos[λ(x – t)]y(t) dt = f(x), f (a) = 0.

Solution: y(x) = f x  (x) + λ2

 x

a f (x) dx.

25.

 x

a

55

cos[λ(x – t)] – 166

y(t) dt = f (x), f (a) = f x  (a) = f xx  (a) = 0.

Solution: y(x) = – 1

λ2f xxx  (x) – f x  (x).

Ngày đăng: 02/07/2014, 13:20

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm