1. Trang chủ
  2. » Khoa Học Tự Nhiên

Handbook of mathematics for engineers and scienteists part 176 pdf

7 274 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 420,65 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

and Erd´elyi, A., Tables of Integral Transforms.. Oberhettinger, F., Tables of Fourier Transforms and Fourier Transforms of Distributions, Springer-Verlag, Berlin, 1980.. Oberhettinger,

Trang 1

T3.6 T ABLES OF I NVERSE M ELLIN T RANSFORMS 1193

No Direct transform, ˆf (s) Inverse transform, f (x) = 1

2πi

 σ+i∞

σ–i∞

ˆ

f (s)xs ds

11 cos s2/a

2

a

π cos 14a|ln x| 2 –14π

12 arctan

 a

s + b



, Re s > –b

x b

|ln x|sin a|ln x|

if 0< x <1 ,

T3.6.4 Expressions with Special Functions

No Direct transform, ˆf (s) Inverse transform, f (x) = 1

2πi

 σ+i∞

σ–i∞

ˆ

f (s)xs ds

2 Γ(s), –1 < Re s <0 ex– 1

3 sin 12πs

Γ(s), –1 < Re s <1 sin x

4 sin(as) Γ(s),

Re s > –1 , |a| < π

2 exp(–x cos a) sin(x sin a)

5 cos 12πs

Γ(s), 0< Re s <1 cos x

6 cos 12πs

Γ(s), –2 < Re s <0 – 2 sin2(x/2 )

7 cos(as) Γ(s), Re s >0 , |a| < π2 exp(–x cos a) cos(x sin a)

8 Γ(s)

cos(πs), 0< Re s < 1

9 Γ(a + s)Γ(b – s),

–a < Re s < b, a + b >0 Γ(a + b)x a (x +1)–a–b

10 Γ(a + s)Γ(b + s),

Re s > –a, –b 2x(a+b)/2K a–b 2√ x

11 Γ(s)

Γ(s + ν), Re s >0, ν >0



( 1– x) ν–1

Γ(ν) if 0< x <1,

0 if 1< x

12

Γ(1– ν – s)

Γ(1– s) ,

Re s <1– ν, ν >0

0 if 0< x <1,

(x –1 )ν–1

Γ(ν) if 1< x

13

Γ(s)

Γ(ν – s +1 ),

0< Re s < ν2 +

3 4

xν/2J ν 2√ x

14 Γ(s + ν)Γ(s – ν)

Γ(s +1/2 ) , Re s >|ν| π– 1/2

ex/2K ν (x/2 ) 15

Γ(s + ν)Γ(1 /2– s)

Γ(1+ ν – s) ,

–ν < Re s < 12

π1/2ex/2I (x/2 )

16 ψ (s + a) – ψ(s + b),

Re s > –a, –b



x b – x a

1– x if 0< x <1 ,

0 if 1< x

17 Γ(s)ψ(s), Re s >0 ex ln x

18 Γ(s, a), a >0 0 if 0< x < a,

ex if a < x

19 Γ(s)Γ(1 – s, a), Re s >0, a >0 (x +1 )–1ea(x+1)

Trang 2

1194 INTEGRALTRANSFORMS

No Direct transform, ˆf (s) Inverse transform, f (x) = 1

2πi

 σ+i∞

σ–i∞

ˆ

f (s)xs ds

20 γ (s, a), Re s >0, a >0 ex if 0< x < a,

0 if a < x

21 J0 a √

b2– s2

, a> 0

0 if 0< x < ea, cos b √

a2– ln2x

π √

a2– ln2x if ea < x < e a,

22 s–1I0 (s), Re s >0



1 if 0< x < e–1,

π–1arccos(ln x) if e– 1< x < e,

23 I (s), Re s >0

– 2ν sin(πν)

πF (x) √

ln2x– 1 if 0< x < e

– 1 , cos 

ν arccos(ln x)

π √

1 – ln2x if e–1< x < e,

where F (x) = – 1– ln x + √

1– ln x 2ν

24 s–1I (s), Re s >0

2ν sin(πν)

πνF (x) if 0< x < e–1, sin 

ν arccos(ln x)

πν if e– 1< x < e,

where F (x) = – 1– ln x + √

1– ln x 2ν

25 sν ν (s), Re s > –12

0 if 0< x < e– 1 , ( 1 – ln2x)ν–1/2

π2ν Γ(ν +1/2 ) if e

– 1< x < e,

26 s–1K0 (s), Re s >0



arccosh(– ln x) if 0< x < e– 1 ,

0 if e– 1< x

27 s–1K1(s), Re s >0  √

ln2x– 1 if 0< x < e–1,

0 if e– 1< x

28 K ν (s), Re s >0

cosh 

ν arccosh(– ln x)

ln2x– 1 if 0< x < e

– 1 ,

29 s–1K ν (s), Re s >0

1

νsinh 

ν arccosh(– ln x)

if 0< x < e– 1 ,

30 sν K ν (s), Re s >0, ν > –12

π(ln2x– 1 )ν–1/2

2ν Γ(ν +1/2 ) if 0< x < e– 1 ,

0 if e– 1< x

References for Chapter T3

Bateman, H and Erd´elyi, A., Tables of Integral Transforms Vol 1, McGraw-Hill, New York, 1954 Bateman, H and Erd´elyi, A., Tables of Integral Transforms Vol 2, McGraw-Hill, New York, 1954 Ditkin, V A and Prudnikov, A P., Integral Transforms and Operational Calculus, Pergamon Press, New

York, 1965.

Oberhettinger, F., Tables of Fourier Transforms and Fourier Transforms of Distributions, Springer-Verlag,

Berlin, 1980.

Oberhettinger, F., Tables of Mellin Transforms, Springer-Verlag, New York, 1974.

Oberhettinger, F and Badii, L., Tables of Laplace Transforms, Springer-Verlag, New York, 1973.

Prudnikov, A P., Brychkov, Yu A., and Marichev, O I., Integrals and Series, Vol 4, Direct Laplace

Transforms, Gordon & Breach, New York, 1992.

Prudnikov, A P., Brychkov, Yu A., and Marichev, O I., Integrals and Series, Vol 5, Inverse Laplace

Transforms, Gordon & Breach, New York, 1992.

Trang 3

Chapter T4

Orthogonal Curvilinear

Systems of Coordinate

T4.1 Arbitrary Curvilinear Coordinate Systems

T4.1.1 General Nonorthogonal Curvilinear Coordinates

T4.1.1-1 Metric tensor Arc length and volume elements in curvilinear coordinates

The curvilinear coordinates x1, x2, x3are defined as functions of the rectangular Cartesian

coordinates x, y, z:

x1= x1(x, y, z), x2 = x2(x, y, z), x3= x3(x, y, z).

Using these formulas, one can express x, y, z in terms of the curvilinear coordinates

x1, x2, x3as follows:

x = x(x1, x2, x3), y = y(x1, x2, x3), z = z(x1, x2, x3)

The metric tensor components g ij are determined by the formulas

g ij (x1, x2, x3) = ∂x ∂x i ∂x ∂x j + ∂x ∂y i ∂x ∂y j + ∂x ∂z i ∂x ∂z j;

g ij (x1, x2, x3) = g ji (x1, x2, x3); i , j =1, 2, 3

The arc length dl between close points (x, y, z)(x1, x2, x3) and (x + dx, y + dy, z + dz)

(x1+ dx1, x2+ dx2, x3+ dx3) is expressed as

(dl)2= (dx)2+ (dy)2+ (dz)2=

3



i=1

3



j=1

g ij (x1, x2, x3) dx i dx j.

The volume of the elementary parallelepiped with vertices at the eight points (x1, x2, x3),

(x1+dx1, x2, x3), (x1, x2+dx2, x3), (x1, x2, x3+dx3), (x1+dx1, x2+dx2, x3), (x1+dx1,

x2, x3+ dx3), (x1, x2+ dx2, x3+ dx3), (x1+ dx1, x2+ dx2, x3+ dx3) is given by

dV = ∂ (x, y, z)

∂ (x1, x2, x3) dx

det|g ij|dx1dx2dx3.

Here, the plus sign corresponds to the standard situation where the tangent vectors to

the coordinate lines x1, x2, x3, pointing toward the direction of growth of the respective

coordinate, form a right-handed triple, just as unit vectorsi,j, k of a right-handed rectangular

Cartesian coordinate system

1195

Trang 4

1196 ORTHOGONALCURVILINEARSYSTEMS OFCOORDINATE

T4.1.1-2 Vector components in Cartesian and curvilinear coordinate systems

The unit vectors i, j, k of a rectangular Cartesian coordinate system* x, y, z and the unit vectors i1, i2, i3 of a curvilinear coordinate system x1, x2, x3 are connected by the linear relations

g nn



∂x

∂x n k

 , n=1,2,3;

i = √g11 ∂x1

2

3

∂x i3;

j = √g11 ∂x1

∂y i1+

2

∂y i2+

3

∂y i3;

k = √g11 ∂x1

∂z i1+

2

∂z i2+

3

∂z i3

In the general case, the vectorsi1,i2,i3are not orthogonal and change their direction from point to point

The components v x , v y , v z of a vector v in a rectangular Cartesian coordinate system

x , y, z and the components v1, v2, v3of the same vector in a curvilinear coordinate system

x1, x2, x3are related by

v = v x i + v y j + v z  k = v1i1+ v2i2+ v3i3,

g nn



∂x n

n

n

 , n=1,2,3;

v x= ∂x ∂x1 √ v g1

∂x

∂x2

v2

∂x

∂x3

v3

33;

v y = ∂x ∂y1 √ v g1

∂y

∂x2

v2

∂y

∂x3

v3

33;

v z = ∂x ∂z1 √ v g1

∂z

∂x2

v2

∂z

∂x3

v3

33.

T4.1.2 General Orthogonal Curvilinear Coordinates

T4.1.2-1 Orthogonal coordinates Length, area, and volume elements

A system of coordinates is orthogonal if

g ij (x1, x2, x3) =0 for ij

In this case the third invariant of the metric tensor is given by

g= det|g ij|= g11g22g33.

The Lam´e coefficients L kof orthogonal curvilinear coordinates are expressed in terms

of the components of the metric tensor as

g ii= ∂x ∂x i

2 +

∂y

∂x i

2 +

 ∂z

∂x i

2 , i=1,2,3

* Here and henceforth the coordinate axes and the respective coordinates of points in space are denoted by the same letters.

Trang 5

T4.1 A RBITRARY C URVILINEAR C OORDINATE S YSTEMS 1197

Arc length element:

(L1dx1)2+ (L2dx2)2+ (L3dx3)2=

g11(dx1)2+ g22(dx2)2+ g33(dx3)2.

The area elements ds i of the respective coordinate surfaces x i= const are given by

ds1= dl2dl3= L2L3dx2dx3=

g22g33dx2dx3,

ds2= dl1dl3= L1L3dx1dx3=

g11g33dx1dx3,

ds3= dl1dl2= L1L2dx1dx2=

g11g22dx1dx2.

Volume element:

dV = L1L2L3dx1dx2dx3 =

g11g22g33 dx1dx2dx3.

T4.1.2-2 Basic differential relations in orthogonal curvilinear coordinates

In what follows, we present the basic differential operators in the orthogonal curvilinear

coordinates x1, x2, x3 The corresponding unit vectors are denoted byi1, i2, i3

The gradient of a scalar f is expressed as

grad f ≡ ∇f = 1

11

∂f

∂x1i1+ 1

22

∂f

∂x2i2+ 1

33

∂f

∂x3i3

Divergence of a vector v = i1v1+i2v2+i3v3:

div v≡ ∇ ⋅v= 1



∂x1



11

 +

∂x2



22

 +

∂x3



33



Gradient of a scalar f along a vector v:

(v⋅ ∇)f = √ v g1

11

∂f

v2

22

∂f

v3

33

∂f

∂x3.

Gradient of a vector  w along a vector v:

(v⋅ ∇) w = i1(v⋅ ∇)w1+i2(v⋅ ∇)w2+i3(v⋅ ∇)w3

Curl of a vector v:

curl v ≡ ∇ ×v = i1

g11

√ g



g33 –

g22 

+i2

22



g11 –

g33 

+i3

33



g22 –

g11  Remark. Sometimes curl v is denoted by rot v.

Laplace operator of a scalar f :

Δf ≡ ∇2f = 1

√ g



∂x1

 √

g

g11

∂f

∂x1

 +

∂x2

 √

g

g22

∂f

∂x2

 +

∂x3

 √

g

g33

∂f

∂x3



Trang 6

1198 ORTHOGONALCURVILINEARSYSTEMS OFCOORDINATE

T4.2 Special Curvilinear Coordinate Systems

T4.2.1 Cylindrical Coordinates

T4.2.1-1 Transformations of coordinates and vectors The metric tensor components The Cartesian coordinates are expressed in terms of the cylindrical ones as

x = ρ cos ϕ, y = ρ sin ϕ, z = z

(0 ≤ρ<∞, 0 ≤ϕ<2π, –∞ < z < ∞).

The cylindrical coordinates are expressed in terms of the cylindrical ones as

x2+ y2, tan ϕ = y/x, z = z (sin ϕ = y/ρ).

Coordinate surfaces:

x2+ y2 = ρ2 (right circular cylinders with their axis coincident with the z-axis),

y = x tan ϕ (half-planes through the z-axis),

z = z (planes perpendicular to the z-axis).

Direct and inverse transformations of the components of a vector v = v x i + v y j + v z  k=

v ρ i ρ + v ϕ i ϕ + v z i z:

v ρ = v x cos ϕ + v y sin ϕ,

v ϕ = –v x sin ϕ + v y cos ϕ,

v z = v z;

v x = v ρ cos ϕ – v ϕ sin ϕ,

v y = v ρ sin ϕ + v ϕ cos ϕ,

v z = v z.

Metric tensor components:

g = ρ.

T4.2.1-2 Basic differential relations

Gradient of a scalar f :

f = ∂f

∂ρ i ρ+ 1

ρ

∂f

∂ϕ i ϕ+ ∂f

∂z i z

Divergence of a vector v:

∇ ⋅v = 1

ρ

∂ (ρv ρ)

ρ

∂v ϕ

Gradient of a scalar f along a vector v:

(v⋅ ∇)f = v ρ ∂f

ρ

∂f

∂z

Gradient of a vector  w along a vector v:

(v⋅ ∇) w = (v⋅ ∇)w ρ i ρ + (v⋅ ∇)w ϕ i ϕ + (v⋅ ∇)w z i z

Curl of a vector v:

∇ ×v=

1

ρ

∂v z

∂z



i ρ+



∂v ρ

∂ρ



i ϕ+ 1

ρ



∂ (ρv ϕ)

∂ϕ



i z

Laplacian of a scalar f :

Δf = 1

ρ

∂ρ



∂ρ

 + 1

ρ2

2f

2f

∂z2.

Remark. The cylindrical coordinates ρ, ϕ are also used as polar coordinates on the plane xy.

Trang 7

T4.2 S PECIAL C URVILINEAR C OORDINATE S YSTEMS 1199 T4.2.2 Spherical Coordinates

T4.2.2-1 Transformations of coordinates and vectors The metric tensor components Cartesian coordinates via spherical ones:

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ

(0 ≤r<∞, 0 ≤θπ, 0 ≤ϕ<2π)

Spherical coordinates via Cartesian ones:

x2+ y2+ z2, θ= arccos z

r, tan ϕ = y

x



sin ϕ = y

x2+ y2

 Coordinate surfaces:

x2+ y2+ z2= r2 (spheres),

x2+ y2– z2tan2θ=0 (circular cones),

y = x tan ϕ (half-planes trough the z-axis).

Direct and inverse transformations of the components of a vector v = v x i + v y j + v z  k=

v r i r + v θ i θ + v ϕ i ϕ:

v r = v x sin θ cos ϕ + v y sin θ sin ϕ + v z cos θ,

v θ = v x cos θ cos ϕ + v y cos θ sin ϕ – v z sin θ,

v ϕ = –v x sin ϕ + v y cos ϕ;

v x = v r sin θ cos ϕ + v θ cos θ cos ϕ – v ϕ sin ϕ,

v y = v r sin θ sin ϕ + v θ cos θ sin ϕ + v ϕ cos ϕ,

v z = v r cos θ – v θ sin θ.

The metric tensor components are

g rr =1, g θθ = r2, g ϕϕ = r2sin2θ,

g = r2sin θ.

T4.2.2-2 Basic differential relations

Gradient of a scalar f :

f = ∂f

∂r i r+ 1

r

∂f

r sin θ

∂f

∂ϕ i ϕ

Divergence of a vector v:

∇ ⋅v= 1

r2

2v

r

r sin θ

∂θ sin θ v θ

r sin ϕ

∂v ϕ

Gradient of a scalar f along a vector v:

(v⋅ ∇)f = v r ∂f

r

∂f

r sin θ

∂f

∂ϕ

Gradient of a vector  w along a vector v:

(v⋅ ∇) w = (v⋅ ∇)w r i r + (v⋅ ∇)w θ i θ + (v⋅ ∇)w ϕ i ϕ

Curl of a vector v:

∇×v= 1

r sin θ



∂ (sin θ v ϕ)

∂ϕ



i r+1

r

 1

sin θ

∂v r

∂r



i θ+1

r



∂ (rv θ)

∂θ



i ϕ

Laplacian of a scalar f :

Δf = 1

r2

∂r



r2∂f

∂r



r2sin θ

∂θ



sin θ ∂f

∂θ



r2sin2θ

2f

∂ϕ2.

...

z = z (planes perpendicular to the z-axis).

Direct and inverse transformations of the components of a vector v = v x i + v y j + v z ...

y = x tan ϕ (half-planes trough the z-axis).

Direct and inverse transformations of the components of a vector v = v x i + v y j + v z ... OORDINATE S YSTEMS 1199 T4.2.2 Spherical Coordinates

T4.2.2-1 Transformations of coordinates and vectors The metric tensor components Cartesian coordinates via spherical ones:

Ngày đăng: 02/07/2014, 13:20

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm