1. Trang chủ
  2. » Khoa Học Tự Nhiên

Handbook of mathematics for engineers and scienteists part 170 ppsx

7 63 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 361,11 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Integrals Involving Hyperbolic Functions 1.. Integrals Involving Logarithmic Functions 1... Integrals Involving Trigonometric Functions T2.2.5-1.. Integrals over a finite interval... A.,

Trang 1

 1

0 x

n eax dx= n!

a n+1 – ea

n



k=0

n!

k!

1

a n–k+1, a>0, n =1,2,

3



0 x

n eax dx= n!

a n+1, a>0, n =1,2,

4



0

eax

x dx= π

a, a>0 5



0 x

ν–1eμx dx= Γ(ν)

μ ν , μ , ν >0 6



0

dx

1+ e ax =

ln2

a 7



0

x2n–1dx

e px–1 = (–1)n–1

2π

p

2n B2

n

4n , n=1,2, ; the B mare Bernoulli numbers

8



0

x2n–1dx

e px+1 = (1–21–2n)

2π

p

2n|B

2n|

4n , n=1,2,

9



epx dx

1+ eqx =

π

q sin(πp/q), q > p >0 or 0> p > q.

10



0

e ax + eax

e bx + ebx dx=

π

2bcosπa

2b

 , b > a.

11



0

epx – eqx

1– e–(p+q)x dx=

π

p + q cot

πp

p + q, p , q >0 12



0 1– eβx ν

eμx dx= 1

β B

μ

β , ν +1 13



0 exp –ax

2

dx= 1 2

π

a, a>0 14



0 x

2n+1exp –ax2

dx= n!

2a n+1, a>0, n=1,2,

15



0 x

2nexp –ax2

dx= 1 × 3 × .×(2n–1)

π

2n+1a n+1 2 , a>0, n=1, 2,

16



exp –a

2x2 bx

dx=

√ π

|a| exp

 b2

4a2



17



0 exp



–ax2– b

x2



dx= 1 2

π

a exp –2√ ab

, a , b >0 18



0 exp –x

a

dx= 1

aΓ1

a

 , a>0

Trang 2

1152 INTEGRALS

T2.2.3 Integrals Involving Hyperbolic Functions

1



0

dx

cosh ax =

π

2|a|.

2



0

dx

a + b cosh x =

2

b2– a2 arctan

b2– a2

a + b if |b|>|a|,

1

a2– b2 ln

a + b + √

a2– b2

a + b – √

a2+ b2 if |b|<|a| 3



0

x2n dx

cosh ax =

 π

2a

2n+1

|E2n|, a>0; the B mare Bernoulli numbers 4



0

x2n

cosh2ax dx= π

2n(22n–2)

a(2a)2n |B2n|, a>0 5



0

cosh ax

cosh bx dx=

π

2bcos

πa

2b

 , b >|a| 6



0 x

2n cosh ax

cosh bx dx=

π

2b

d2n

da2n

1

cos 12πa/b , b >|a|, n=1, 2,

7



0

cosh ax cosh bx

cosh(cx) dx=

π c

cosπa

2c

 cosπb

2c



cosπa

c

 + cosπb

c

 , c >|a|+|b| 8



0

x dx

sinh ax =

π2

2a2, a>0 9



0

dx

a + b sinh x =

1

a2+ b2 ln

a + b + √

a2+ b2

a + b – √

a2+ b2, ab≠ 0 10



0

sinh ax

sinh bx dx=

π

2b tanπa

2b

 , b>|a| 11



0 x

2n sinh ax

sinh bx dx=

π

2b

d2n

dx2n tan

πa

2b

 , b>|a|, n=1, 2,

12



0

x2n

sinh2ax dx= π

2n

a2n+1|B2n|, a>0

T2.2.4 Integrals Involving Logarithmic Functions

1

 1

0 x

a–1lnn x dx= (–1)n n ! an–1, a>0, n=1,2,

2

 1

0

ln x

x+1dx= –

π2

12.

3

 1

0

x n ln x

x+1 dx= (–1)n+1



π2

12 +

n



k=1

(–1)k

k2

 , n=1, 2,

Trang 3

 1

0

x μ–1ln x

x + a dx=

πa μ–1

sin(πμ)



ln a – π cot(πμ)

, 0< μ <1 5

 1

0 |ln x|μ dx=Γ(μ +1), μ> –1

6



0 x

μ–1ln(1+ ax) dx = π

μa μ sin(πμ), –1< μ <0 7

 1

0 x

2n–1ln(1+ x) dx = 1

2n

2n



k=1

(–1)k–1

k , n=1,2,

8

 1

0 x

2nln(1+ x) dx = 1

2n+1



ln4+

2n+1

k=1

(–1)k

k

 , n=0,1,

9

 1

0 x

n–1 2ln(1+ x) dx = 2ln2

2n+1 +

4(–1)n

2n+1



π

n



k=0

(–1)k

2k+1

 , n=1, 2,

10



0 ln

a2+ x2

b2+ x2 dx = π(a – b), a , b >0

11



0

x p–1ln x

1+ x q dx= –

π2cos(πp/q)

q2sin2(πp/q), 0< p < q.

12



0 e

μx ln x dx = –1

μ(C + ln μ), μ >0, C =0.5772 .

T2.2.5 Integrals Involving Trigonometric Functions

T2.2.5-1 Integrals over a finite interval

1

 π/2

0 cos

2n x dx= π

2

1 × 3 × .×(2n–1)

2 × 4 × .×(2n) , n=1, 2,

2

 π/2

0 cos

2n+1x dx= 2 × 4 × .×(2n)

1 × 3 × .×(2n+1), n=1, 2,

3

 π/2

0 xcos

n x dx= –m–1

k=0

(n –2k+1)(n –2k+3) (n –1)

(n –2k )(n –2k+2) n

1

n–2k

+

π

2

(2m–2)!!

(2m–1)!! if n =2m–1,

π2

8

(2m–1)!!

(2m)!! if n =2m,

m=1, 2,

4

 π

0

dx

(a+b cos x) n+1 =

π

2n (a+b) n √

a2–b2

n



k=0

(2n–2k–1)!! (2k–1)!!

(n–k)! k!

a +b

a –b

k

, a >|b|

5

 π/2

0 sin

2n x dx= π

2

1 × 3 × .×(2n–1)

2 × 4 × .×(2n) , n=1,2,

Trang 4

1154 INTEGRALS

6

 π/2

0 sin

2n+1x dx= 2 × 4 × .×(2n)

1 × 3 × .×(2n+1), n=1, 2,

7

 π

0 xsin

μ x dx= π2

2μ+1 Γ(μ +1)



Γ μ+ 12 2, μ> –1 8

 π/2

0

sin x dx

1– k2sin2x = 1

2kln1+ k

1– k.

9

 π/2

0 sin

2n+1xcos2m+1x dx= n ! m!

2(n + m +1)!, n , m =1, 2,

10

 π/2

0 sin

p–1xcosq–1x dx= 1

2B 12p,12q

11

 2π

0 (a sin x + b cos x)

2n dx=2π(2n–1)!!

(2n)!! a

2+ b2 n

, n=1,2,

12

 π

0

sin x dx

a2+1–2a cos x =



2 if 0 ≤a≤ 1,

2/a if 1< a.

13

 π/2

0 (tan x)

λ dx= π

2cos 12πλ , |λ|<1 T2.2.5-2 Integrals over an infinite interval

1



0

cos ax

x dx= π

2a, a>0 2



0

cos ax – cos bx

x dx= lnb

a



, ab≠ 0 3



0

cos ax – cos bx

x2 dx= 12π (b – a), a , b≥ 0 4



0 x

μ–1cos ax dx = aμ Γ(μ) cos 12πμ

, a>0, 0< μ <1 5



0

cos ax

b2+ x2 dx=

π

2b e

ab, a , b >0

6



0

cos ax

b4+ x4 dx=

π √

2

4b3 exp

 –√ ab

2



cos



ab

2

 + sin

ab

2



, a , b >0 7



0

cos ax

(b2+ x2)2 dx=

π

4b3(1+ ab)eab, a , b >0 8



0

cos ax dx

(b2+ x2)(c2+ x2) =

π beac – ceab

2bc b2– c2 , a, b, c >0 9



0 cos ax

2

dx= 1 2

π

2a, a>0

Trang 5



0 cos ax

p

dx= Γ(1/p)

pa1/p cos

π

2p, a>0, p>1 11



0

sin ax

x dx= π

2 sign a.

12



0

sin2ax

x2 dx=

π

2|a|.

13



0

sin ax

x dx= π

2a, a>0 14



0 x

μ–1sin ax dx = aμ Γ(μ) sin 12πμ

, a>0, 0< μ <1 15



0 sin ax

2

dx= 1 2

π

2a, a>0 16



0 sin ax

p

dx= Γ(1/p)

pa1/p sin

π

2p, a>0, p>1 17



0

sin x cos ax

x dx=

π

2 if |a|<1,

π

4 if |a|=1,

0 if 1<|a| 18



0

tan ax

x dx= π

2 sign a.

19



0 e

ax sin bx dx = b

a2+ b2, a>0 20



0 e

ax cos bx dx = a

a2+ b2, a>0 21



0 exp –ax

2

cos bx dx = 1

2

π

a exp

b2

4a

 22



0 cos(ax

2) cos bx dx = π

8a

 cos



b2

4a

 + sin



b2

4a



, a , b >0 23



0 (cos ax + sin ax) cos(b

2x2) dx = 1

b

π

8 exp

 –a

2

2b

 , a , b >0 24



0



cos ax + sin ax

sin(b2x2) dx = 1

b

π

8 exp

 –a

2

2b

 , a , b >0

References for Chapter T2

Bronshtein, I N and Semendyayev, K A., Handbook of Mathematics, 4th Edition, Springer-Verlag, Berlin,

2004.

Dwight, H B., Tables of Integrals and Other Mathematical Data, Macmillan, New York, 1961.

Gradshteyn, I S and Ryzhik, I M., Tables of Integrals, Series, and Products, 6th Edition, Academic Press,

New York, 2000.

Prudnikov, A P., Brychkov, Yu A., and Marichev, O I., Integrals and Series, Vol 1, Elementary Functions,

Gordon & Breach, New York, 1986.

Prudnikov, A P., Brychkov, Yu A., and Marichev, O I., Integrals and Series, Vol 2, Special Functions,

Gordon & Breach, New York, 1986.

Prudnikov, A P., Brychkov, Yu A., and Marichev, O I., Integrals and Series, Vol 3, More Special Functions,

Gordon & Breach, New York, 1988.

Zwillinger, D., CRC Standard Mathematical Tables and Formulae, 31st Edition, CRC Press, Boca Raton, 2002.

Trang 7

Integral Transforms

T3.1 Tables of Laplace Transforms

T3.1.1 General Formulas

No. Original function, f (x) Laplace transform, 2f (p) =



0 e

px f (x) dx

1 af1(x) + bf2(x) a 2 f1(p) + b 2 f2(p)

3 0 if 0< x < a,

ap f2(p)

4 x n (x); n =1 , 2, (– 1 )n d

dp n f2(p)

x f (x)



p

2

f (q) dq

7 sinh(ax)f (x) 12 2f (p – a) – 2 f (p + a)

8 cosh(ax)f (x) 12 2f (p – a) + 2 f (p + a)

9 sin(ωx)f (x)i 2f (p – iω) – 2 f (p + iω)

, i2= – 1

10 cos(ωx)f (x) 12 2f (p – iω) + 2 f (p + iω)

, i2= – 1

π



0

exp 

p

2

4t 2

 2

f (t2) dt

12 x a–1f

1

x



, a > –1



0 (t/p) a/2J a 2√ pt 2f (t) dt

13 f (a sinh x), a >0



0 J p (at) 2 f (t) dt

14 f (x + a) = f (x) (periodic function) 1

1– e ap

 a

0

f (x)epx dx

15 f (x + a) = –f (x)

(antiperiodic function)

1

1+ eap

 a

0

f (x)epx dx

k=1

p n–k f x(k–1)(+ 0 )

1157

Ngày đăng: 02/07/2014, 13:20

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm