1. Trang chủ
  2. » Khoa Học Tự Nhiên

Handbook of mathematics for engineers and scienteists part 166 potx

7 158 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 289,94 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

1124 FINITESUMS ANDINFINITESERIES31... 1126 FINITESUMS ANDINFINITESERIES27... B., Tables of Integrals and Other Mathematical Data, Macmillan, New York, 1961.. M., Tables of Integrals, Se

Trang 1



k=1

(–1)k

k2n+1 sin(kx) =

(–1)n–1(2π)2n+1

2(2n+1)! B2n+1

x + π

2π ,

where –π < xπ for n =0, 1, ; the B n (x) are Bernoulli polynomials.

17



k=1

1

k! sin(kx) = exp(cos x) sin(sin x), xis any number.

18



k=1

(–1)k

k! sin(kx) = – exp(– cos x) sin(sin x), xis any number.

19



k=0

1

(2k)! sin(kx) = sin



sinx

2



sinh



cosx

2



, xis any number

20



k=0

(–1)k

(2k)! sin(kx) = – sin



cosx

2



sinh



sin x

2



, xis any number

21



k=0

a k

k! sin(kx) = exp(k cos x) sin(k sin x), |a| ≤ 1, x is any number.

22



k=0

a k sin(kx) = a sin x

1–2a cos x + a2, |a|<1, x is any number.

23



k=1

ka k sin(kx) = a(1– a2) sin x

(1–2a cos x + a2)2, |a|<1, x is any number.

24



k=1

1

k sin(kx + a) = 1

2(π – x) cos a – ln



2sin x

2



sin a, 0< x <2π

25



k=1

(–1)k–1

k sin(kx + a) = 1

2x cos a + ln



2cosx2



sin a, –π < x < π.

26



k=1

sin[(2k–1)x]

2k–1 =

π

4, 0< x < π.

27



k=1

(–1)k–1sin[(2k–1)x]

2k–1 =

1

2ln tan



x

2 +

π

4



, –π

2 < x <

π

2.

28



k=1

a2k–1sin[(2k–1)x]

2k–1 =

1

2arctan

2a sin x

1– a2 , 0< x <2π, |a| ≤ 1 29



k=1

(–1)k–1a2k–1sin[(2k–1)x]

2k–1 =

1

4 ln

1+2a sin x + a2

1–2a sin x + a2, 0< x < π, |a| ≤ 1 30



k=1

(–1)k sin[(k +1)x]

k (k +1) = sin x –

1

2x(1+ cos x) – sin x ln



2cos x

2





Trang 2

1124 FINITESUMS ANDINFINITESERIES

31



k=0

a2k+1sin[(2k+1)x] = a(1+ a2) sin x

(1+ a2)2–4a2cos2x, |a|<1, x is any number.

32



k=0

(–1)k a2k+1sin[(2k+1)x] = a(1– a2) sin x

(1+ a2)2–4a2sin2x, |a|<1, x is any number.

33



k=1

sin[2(k +1)x]

k (k +1) = sin(2x ) – (π –2x) sin2x – sin x cos x ln(4sin2x), 0 ≤xπ 34



k=1

(–1)ksin[(2k+1)x]

(2k+1)2 =

 1

4πx if –12πx≤ 1

2π, 1

4π (π – x) if 12πx≤ 3

2π.

T1.2.2-3 Trigonometric series in one variable involving cosine

1



k=1

1

k cos(kx) = – ln



2sin x

2



, 0< x <2π

2



k=1

(–1)k–1

k cos(kx) = ln



2cosx

2



, –π < x < π.

3



k=1

a k

k cos(kx) = ln √ 1

1–2a cos x + a2, 0< x <2π, |a| ≤ 1 4



k=0

1

2k+1 cos(kx) =

π

4 sin

x

2 + cos

x

2 ln



cot2 x

4



, 0< x <2π

5



k=0

(–1)k

2k+1 cos(kx) = –

1

4 sin

x

2 ln



cot2 x + π

4



+ π

4 cos

x

2, –π < x < π.

6



k=1

1

k2 cos(kx) =

1

12(3x2–6πx+2π2), 0 ≤x≤ 2π.

7



k=1

(–1)k

k2 cos(kx) =

1

12(3x2– π2), –πxπ.

8



k=1

1

k (k +1) cos(kx) =

1

2(x – π) sin x –2sin2

x

2 ln



2sin x

2



+1, 0 ≤x≤ 2π

9



k=1

(–1)k

k (k +1) cos(kx) = –

1

2x sin x –2cos2

x

2 ln



2cosx

2



+1, –πxπ

10



k=1

1

k2+ a2 cos(kx) =

π

2a sinh(πa) cosh[a(π – x)] –

1

2a2, 0 ≤x≤ 2π 11



k=1

1

k2– a2 cos(kx) = –

π

2a sin(πa) cos[a(π – x)] +

1

2a2, 0 ≤x≤ 2π

Trang 3



k=2

(–1)k

k2–1 cos(kx) =

1

2 –

1

4cos x –

1

2x sin x, –πxπ.

13



k=2

k

k2–1 cos(kx) = –

1

2 –

1

4cos x – cos x ln



2sin x

2



, 0< x <2π

14



k=1

1

k2n cos(kx) =

(–1)n–1(2π)2n

2(2n)! B2n



x

2π



, where0 ≤x≤ 2π for n =1, 2, ; the B n (x) are Bernoulli polynomials.

15



k=1

(–1)k

k2n cos(kx) =

(–1)n–1(2π)2n

2(2n)! B2n



x + π

2π



,

where –πxπ for n =1,2, ; the B n (x) are Bernoulli polynomials.

16



k=0

1

k! cos(kx) = exp(cos x) cos(sin x), xis any number.

17



k=0

(–1)k

k! cos(kx) = exp(– cos x) cos(sin x), xis any number.

18



k=0

1

(2k)! cos(kx) = cos



sin x

2



cosh



cos x

2



, xis any number

19



k=0

(–1)k

(2k)! cos(kx) = cos



cos x

2



cosh



sin x

2



, xis any number

20



k=0

a k

k! cos(kx) = exp(a cos x) cos(a sin x), |a| ≤ 1, x is any number.

21



k=0

a k cos(kx) = 1– a cos x

1–2a cos x + a2, |a|<1, x is any number.

22



k=1

ka k cos(kx) = a(1+ a2) cos x –2a2

(1–2a cos x + a2)2 , |a|<1, x is any number.

23



k=1

1

k cos(kx + a) = 1

2(x – π) sin a – ln



2sin x

2



cos a, 0< x <2π

24



k=1

(–1)k–1

k cos(kx + a) = –1

2x sin a + ln



2cosx

2



cos a, –π < x < π.

25



k=1

cos[(2k–1)x]

2k–1 =

1

2 ln cot

x

2, 0< x < π.

26



k=1

(–1)k–1cos[(2k–1)x]

2k–1 =

π

4, 0< x < π.

Trang 4

1126 FINITESUMS ANDINFINITESERIES

27



k=1

a2k–1cos[(2k–1)x]

2k–1 =

1

4 ln

1+2a cos x + a2

1–2a cos x + a2, 0< x <2π, |a| ≤ 1 28



k=1

(–1)k–1a2k–1cos[(2k–1)x]

2k–1 =

1

2arctan

2a cos x

1– a2 , 0< x < π, |a| ≤ 1 29



k=1

cos[(2k–1)x]

(2k–1)2 =

π

4



π

2 –|x|



, –πxπ

30



k=1

(–1)k cos[(k +1)x]

k (k +1) = cos x –

1

2x sin x – (1+ cos x) ln



2cos x

2





31



k=0

a2k+1cos[(2k+1)x] = a(1– a2) cos x

(1+ a2)2–4a2cos2x, |a|<1, x is any number.

32



k=0

(–1)k a2k+1cos[(2k+1)x] = a(1+ a2) cos x

(1+ a2)2–4a2sin2x, |a|<1, x is any number.

33



k=1

cos[2(k +1)x]

k (k +1) = cos(2x) –



π

2 – x



sin(2x) + sin2xln(4sin2x), 0 ≤xπ

T1.2.2-4 Trigonometric series in two variables

1



k=1

1

k sin(kx) sin(ky) = 1

2ln



sin x + y2 cosec x – y

2



, x y≠ 0, 2π, 4π ,

2



k=1

(–1)k

k sin(kx) sin(ky) = 1

2ln



cos x + y2 secx – y

2



, x yπ, 3π, 5π ,

3



k=1

1

k2 sin(kx) sin(ky) =

1

2x (π – y) if –yxy,

1

2y (π – x) if yx≤ 2π – y. Here, 0< y < π.

4



k=1

(–1)k+1

k2 sin(kx) sin(ky) =

1

2xy, |x y| ≤π.

5



k=1

a k

k sin(kx) sin(ky) = 1

4 ln

4asin2[(x + y)/2] + (a –1)2

4asin2[(x – y)/2] + (a –1)2, 0< a <1 6



k=1

1

k2 sin2(kx) sin2(ky) =

1

2πx, 0 ≤xy

π

2.

7



k=1

1

k cos(kx) cos(ky) = –1

2 ln2(cos x – cos y), x y≠ 0, 2π, 4π ,

8



k=1

(–1)k

k cos(kx) cos(ky) = –1

2 ln2(cos x + cos y), x yπ, 3π,5π ,

Trang 5



k=1

1

k sin(kx) cos(ky) =

–12 if 0< x < y,

1

4(π –2y) if x = y,

1

2(π – x) if y < x < π.

Here, 0< y < π.

10



k=1

1

k2 cos(kx) cos(ky) =

 1 12



3x2+3(y – π)2– π2

if 0 ≤xy,

1 12



3y2+3(x – π)2– π2

if yxπ Here, 0< y < π.

11



k=1

(–1)k

k2 cos(kx) cos(ky) =

 1 12



3(x2+ y2) – π2

if –(π – y)xπ – y,

1 12



3(x – π)2+3(y – π)2– π2

if π – yxπ + y.

Here, 0< y < π.

References for Chapter T1

Dwight, H B., Tables of Integrals and Other Mathematical Data, Macmillan, New York, 1961.

Gradshteyn, I S and Ryzhik, I M., Tables of Integrals, Series, and Products, 6th Edition, Academic Press,

New York, 2000.

Hansen, E R., A Table of Series and Products, Printice Hall, Englewood Cliffs, London, 1975.

Mangulis, V., Handbook of Series for Scientists and Engineers, Academic Press, New York, 1965.

Prudnikov, A P., Brychkov, Yu A., and Marichev, O I., Integrals and Series, Vol 1, Elementary Functions,

Gordon & Breach, New York, 1986.

Zwillinger, D., CRC Standard Mathematical Tables and Formulae, 31st Edition, CRC Press, Boca Raton, 2002.

Trang 7

T2.1 Indefinite Integrals

 Throughout Section T2.1, the integration constant C is omitted for brevity.

T2.1.1 Integrals Involving Rational Functions

T2.1.1-1 Integrals involving a + bx.

1



dx

a + bx =

1

b ln|a + bx| 2



(a + bx) n dx= (a + bx) n+

1

b (n +1) , n≠–1 3



x dx

a + bx =

1

b2 a + bx – a ln|a + bx| 4



x2dx

a + bx =

1

b3

*1

2(a + bx)2–2a (a + bx) + a2ln|a + bx|

+

5



dx

x (a + bx) = –

1

alna + bx

x





6



dx

x2(a + bx) = –

1

ax + b

a2 lna + bx

x





7



x dx

(a + bx)2 =

1

b2



ln|a + bx|+ a

a + bx



8



x2dx

(a + bx)2 =

1

b3



a + bx –2aln|a + bx|– a

2

a + bx



9



dx

x (a + bx)2 =

1

a (a + bx)

1

a2 lna + bx

x





10



x dx

(a + bx)3 =

1

b2

*

– 1

a + bx +

a

2(a + bx)2

+

T2.1.1-2 Integrals involving a + x and b + x.

1



a + x

b + x dx = x + (a – b) ln|b + x|

1129

Ngày đăng: 02/07/2014, 13:20

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm