1116 FINITESUMS ANDINFINITESERIES2... Sums involving trigonometric functions... 1118 FINITESUMS ANDINFINITESERIES11... Other numerical series.1... 1120 FINITESUMS ANDINFINITESERIES16...
Trang 11116 FINITESUMS ANDINFINITESERIES
2
n
k=1
sin2m πk
2n = n
22m C2m m+ 1
2, m<2n. 3
n–1
k=0
(–1)kcosm πk
n = 1 2
1– (–1)m+n
, m=0,1, , n –1
4
n–1
k=0
(–1)kcosn πk
n = n
2n–1.
T1.1.2 Functional Sums
T1.1.2-1 Sums involving hyperbolic functions
1
n–1
k=0
sinh(kx + a) = sinh
n–1
2 x + a
sinh(nx/2)
sinh(x/2) . 2
n–1
k=0
cosh(kx + a) = cosh
n–1
2 x + a
sinh(nx/2)
sinh(x/2) . 3
n–1
k=0
(–1)k sinh(kx + a) = 1
2cosh(x/2)
sinh
a– x 2
+ (–1)nsinh
2
n–1
2 x + a
4
n–1
k=0
(–1)k cosh(kx + a) = 1
2cosh(x/2)
cosh
a– x 2
+ (–1)ncosh
2
n–1
2 x + a
5
n–1
k=1
k sinh(kx + a) = – 1
sinh2(x/2)
n sinh[(n –1)x + a] – (n –1) sinh(nx + a) – sinh a
4
6
n–1
k=1
k cosh(kx + a) = – 1
sinh2(x/2)
n cosh[(n –1)x + a] – (n –1) cosh(nx + a) – cosh a
4
7
n–1
k=1
(–1)k k sinh(kx + a) = 1
cosh2(x/2)
(–1)n–1n sinh[(n –1)x + a]
+ (–1)n–1(n –1) sinh(nx + a) – sinh a
4 8
n–1
k=1
(–1)k k cosh(kx + a) = 1
cosh2(x/2)
(–1)n–1n cosh[(n –1)x + a]
+ (–1)n–1(n –1) cosh(nx + a) – cosh a
4 9
n
k=0
C k
n sinh(kx + a) =2ncoshn x
2 sinh
nx
2 + a
10
n
k=0
C k
n cosh(kx + a) =2ncoshn x
2 cosh
nx
2 + a
Trang 2
n–1
k=1
a k sinh(kx) = a sinh x – a n sinh(nx) + a n+1sinh[(n –1)x]
1–2a cosh x + a2 .
12
n–1
k=0
a k cosh(kx) = 1– a cosh x – a n cosh(nx) + a n+1cosh[(n –1)x]
1–2a cosh x + a2 .
13
n
k=1
1
2k tanh
x
2k = coth x –
1
2n coth
x
2n.
14
n–1
k=0
2ktanh(2k x) =2ncoth(2n x ) – coth x.
T1.1.2-2 Sums involving trigonometric functions
1
n
k=1
sin(2kx ) = sin[(n +1)x] sin(nx) cosec x.
2
n
k=0
cos(2kx ) = sin[(n +1)x] cos(nx) cosec x.
3
n
k=1
sin[(2k–1)x] = sin2(nx) cosec x.
4
n
k=1
cos[(2k–1)x] = sin(nx) cos(nx) cosec x.
5
n–1
k=0
sin(kx + a) = sin
n–1
2 x + a
sin nx
2 cosec
x
2. 6
n–1
k=0
cos(kx + a) = cos
n–1
2 x + a
sin nx
2 cosec
x
2. 7
2n–1
k=0
(–1)k cos(kx + a) = sin
2
n–1
2 x + a
sin(nx) sec x
2. 8
n
k=1
(–1)k+1sin[(2k–1)x] = (–1)n+1sin(2nx)
2cos x .
9
n
k=1
(–1)kcos(2kx) = –1
2 + (–1)n
cos[(2n+1)x]
2cos x .
10
n
k=1
sin2(kx) = n
2 –
cos[(n +1)x] sin(nx)
2sin x .
Trang 31118 FINITESUMS ANDINFINITESERIES
11
n
k=1
cos2(kx) = n
2 +
cos[(n +1)x] sin(nx)
2sin x .
12
n–1
k=1
ksin(2kx) = sin(2nx)
4sin2x – ncos[(2n–1)x]
2sin x .
13
n–1
k=1
kcos(2kx) = nsin[(2n–1)x]
2sin x –
1– cos(2nx)
4sin2x 14
n–1
k=1
a k sin(kx) = a sin x – a n sin(nx) + a n+1sin[(n –1)x]
1–2a cos x + a2 .
15
n–1
k=0
a k cos(kx) = 1– a cos x – a n cos(nx) + a n+1cos[(n –1)x]
1–2a cos x + a2 .
16
n
k=0
C k
n sin(kx + a) =2ncosn x
2 sin
nx
2 + a
17
n
k=0
C k
n cos(kx + a) =2ncosn x
2 cos
nx
2 + a
18
n
k=0
(–1)k C k
n sin(kx + a) = (–2)nsinn x
2 sin
nx
2 +
πn
2 + a
19
n
k=0
(–1)k C k
n cos(kx + a) = (–2)nsinn x
2 cos
nx
2 +
πn
2 + a
20
n
k=1
2ksin2 x
2k
2
=
2nsin2 x
2n
2 – sin2x
21
n
k=0
1
2k tan
x
2k =
1
2n cot
x
2n –2cot(2x)
T1.2 Infinite Series
T1.2.1 Numerical Series
T1.2.1-1 Progressions
1
∞
k=0
aq k = a
1– q, |q|<1 2
∞
k=0
(a + bk)q k= a
1– q +
bq
(1– q)2, |q|<1
Trang 4T1.2.1-2 Other numerical series.
1
∞
n=0
(–1)n
n+1 = ln2.
2
∞
n=0
(–1)n
2n+1 =
π
4. 3
∞
n=1
1
n (n +1) =1
4
∞
n=1
(–1)n
n (n +1) =1–2ln2
5
∞
n=1
1
n (n +2) =
3
4. 6
∞
n=1
(–1)n
n (n +2) = –
1
4. 7
∞
n=1
1 (2n–1)(2n+1) =
1
2. 8
∞
n=1
1
n2 =
π2
6 . 9
∞
n=1
(–1)n+1
n2 =
π2
12. 10
∞
n=1
1
(2n–1)2 =
π2
8 . 11
∞
n=1
1
n2+ a2 =
π
2a coth(πa) – 1
2a2. 12
∞
n=1
1
n2– a2 = –
π
2a cot(πa) + 1
2a2. 13
∞
k=1
1
k2n =
22n–1π2n
(2n)! |B2n|; the B2nare Bernoulli numbers
14
∞
k=1
(–1)k+1
k2n =
(22n–1–1)π2n
(2n)! |B2n|; the B2nare Bernoulli numbers
15
∞
k=1
1
(2k–1)2n =
(22n–1–1)π2n
2(2n)! |B2n|; the B2nare Bernoulli numbers
Trang 51120 FINITESUMS ANDINFINITESERIES
16
∞
k=1
1
k2k = ln2
17
∞
k=0
(–1)k
n2k =
n2
n2+1. 18
∞
k=0
1
k! = e =2.71828 .
19
∞
k=0
(–1)k
k! =
1
e =0.36787 .
20
∞
k=1
k
(k +1)! =1
T1.2.2 Functional Series
T1.2.2-1 Power series
1
∞
k=0
x k= 1
1– x, |x|<1
2
∞
k=1
kx k= x
(1– x)2, |x|<1 3
∞
k=1
k2x k= x (x +1)
(1– x)3 , |x|<1 4
∞
k=1
k3x k= x(1+4x + x2)
(1– x)4 , |x|<1 5
∞
k=0
( 1)k k n x k=
x d dx
n 1
1x, |x|<1 6
∞
k=1
x k
k = – ln(1– x), –1 ≤x<1
7
∞
k=1
(–1)k–1x k
k = ln(1+ x), |x|<1 8
∞
k=1
x2k–1
2k–1 =
1
2 ln
1+ x
1– x, |x|<1 9
∞
k=1
(–1)k–1 x
2k–1
2k–1 = arctan x, |x| ≤ 1.
Trang 6∞
k=1
x k
k2 = –
x 0
ln(1– t)
t dt, |x| ≤ 1 11
∞
k=1
x k+1
k (k +1) = x + (1– x) ln(1– x), |x| ≤ 1
12
∞
k=1
x k+2
k (k +2) =
x
2 +
x2
4 +
1
2(1– x2) ln(1– x), |x| ≤ 1. 13
∞
k=0
x k
k! = e
x, xis any number.
14
∞
k=0
x2k
(2k)! = cosh x, xis any number.
15
∞
k=0
(–1)k x
2k
(2k)! = cos x, xis any number.
16
∞
k=0
x2k+1
(2k+1)! = sinh x, xis any number.
17
∞
k=0
(–1)k x
2k+1 (2k+1)! = sin x, xis any number.
18
∞
k=0
x k+1
k ! (k +1) = e
x–1, xis any number
19
∞
k=0
x k+2
k ! (k +2) = (x –1)e x+1, xis any number
20
∞
k=0
(–1)k x
2k+1
k! (2k+1) =
√ π
2 erf x, xis any number.
21
∞
k=0
(k + a) n
k! x
k=
d n
dt n exp(at + xe t
t=0, xis any number.
22
∞
k=1
22k(22k–1)|B2k|
(2k)! x
2k–1= tan x; the B
2kare Bernoulli numbers, |x|< π/2
23
∞
k=1
(–1)k–122k(22k–1)|B2k|
(2k)! x
2k–1= tanh x; the B
2kare Bernoulli numbers,|x|< π/2
24
∞
k=1
22k|B2k|
(2k)! x
2k–1= 1
x – cot x; the B2kare Bernoulli numbers, 0<|x|< π.
25
∞
k=1
(–1)k–122k|B2k|
(2k)! x
2k–1= coth x – 1
x; the B2kare Bernoulli numbers, |x|< π.
Trang 71122 FINITESUMS ANDINFINITESERIES
T1.2.2-2 Trigonometric series in one variable involving sine
1
∞
k=1
1
k sin(kx) = 1
2(π – x), 0< x <2π. 2
∞
k=1
(–1)k–1
k sin(kx) = 1
2x, –π < x < π.
3
∞
k=1
a k
k sin(kx) = arctan a sin x
1– a cos x, 0< x <2π, |a| ≤ 1 4
∞
k=0
1
2k+1 sin(kx) =
π
4 cos
x
2 – sin
x
2 ln
cot2 x 4
, 0< x <2π
5
∞
k=0
(–1)k
2k+1 sin(kx) = –
1
4 cos
x
2 ln
cot2 x + π 4
– π
4 sin
x
2, –π < x < π.
6
∞
k=1
1
k2 sin(kx) = –
x
0 ln
2sin t 2
dt, 0 ≤x < π.
7
∞
k=1
(–1)k
k2 sin(kx) = –
x
0 ln
2cos t 2
dt, –π < x < π.
8
∞
k=1
1
k (k +1) sin(kx) = (π – x) sin
2 x
2 + sin x ln
2sin x 2
, 0 ≤x≤ 2π
9
∞
k=1
(–1)k
k (k +1) sin(kx) = –x cos
2 x
2 + sin x ln
2cosx 2
, –π ≤x≤π
10
∞
k=1
k
k2+ a2 sin(kx) =
π
2sinh(πa) sinh[a(π – x)], 0< x <2π 11
∞
k=1
(–1)k+1 k
k2+ a2 sin(kx) =
π
2sinh(πa) sinh(ax), –π < x < π.
12
∞
k=1
k
k2– a2 sin(kx) =
π
2sin(πa) sin[a(π – x)], 0< x <2π 13
∞
k=1
(–1)k+1 k
k2– a2 sin(kx) =
π
2sin(πa) sin(ax), –π < x < π.
14
∞
k=2
(–1)k k
k2–1 sin(kx) =
1
4 sin x +
1
2x cos x, –π < x < π.
15
∞
k=1
1
k2n+1 sin(kx) =
(–1)n–1(2π)2n+1
2(2n+1)! B2n+1
x
2π
, where0 ≤x≤ 2π for n =1, 2, ; 0< x <2π for n =0; and the B n (x) are Bernoulli
polynomials