1. Trang chủ
  2. » Khoa Học Tự Nhiên

Handbook of mathematics for engineers and scienteists part 165 pptx

7 243 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 225,33 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

1116 FINITESUMS ANDINFINITESERIES2... Sums involving trigonometric functions... 1118 FINITESUMS ANDINFINITESERIES11... Other numerical series.1... 1120 FINITESUMS ANDINFINITESERIES16...

Trang 1

1116 FINITESUMS ANDINFINITESERIES

2

n



k=1

sin2m πk

2n = n

22m C2m m+ 1

2, m<2n. 3

n–1



k=0

(–1)kcosm πk

n = 1 2



1– (–1)m+n

, m=0,1, , n –1

4

n–1



k=0

(–1)kcosn πk

n = n

2n–1.

T1.1.2 Functional Sums

T1.1.2-1 Sums involving hyperbolic functions

1

n–1



k=0

sinh(kx + a) = sinh



n–1

2 x + a



sinh(nx/2)

sinh(x/2) . 2

n–1



k=0

cosh(kx + a) = cosh



n–1

2 x + a



sinh(nx/2)

sinh(x/2) . 3

n–1



k=0

(–1)k sinh(kx + a) = 1

2cosh(x/2)

 sinh



ax 2

 + (–1)nsinh

2

n–1

2 x + a



4

n–1



k=0

(–1)k cosh(kx + a) = 1

2cosh(x/2)

 cosh



ax 2

 + (–1)ncosh

2

n–1

2 x + a



5

n–1



k=1

k sinh(kx + a) = – 1

sinh2(x/2)



n sinh[(n –1)x + a] – (n –1) sinh(nx + a) – sinh a

4

6

n–1



k=1

k cosh(kx + a) = – 1

sinh2(x/2)



n cosh[(n –1)x + a] – (n –1) cosh(nx + a) – cosh a

4

7

n–1



k=1

(–1)k k sinh(kx + a) = 1

cosh2(x/2)

 (–1)n–1n sinh[(n –1)x + a]

+ (–1)n–1(n –1) sinh(nx + a) – sinh a

4 8

n–1



k=1

(–1)k k cosh(kx + a) = 1

cosh2(x/2)

 (–1)n–1n cosh[(n –1)x + a]

+ (–1)n–1(n –1) cosh(nx + a) – cosh a

4 9

n



k=0

C k

n sinh(kx + a) =2ncoshn x

2 sinh



nx

2 + a



10

n



k=0

C k

n cosh(kx + a) =2ncoshn x

2 cosh



nx

2 + a



Trang 2

n–1



k=1

a k sinh(kx) = a sinh x – a n sinh(nx) + a n+1sinh[(n –1)x]

1–2a cosh x + a2 .

12

n–1



k=0

a k cosh(kx) = 1– a cosh x – a n cosh(nx) + a n+1cosh[(n –1)x]

1–2a cosh x + a2 .

13

n



k=1

1

2k tanh

x

2k = coth x –

1

2n coth

x

2n.

14

n–1



k=0

2ktanh(2k x) =2ncoth(2n x ) – coth x.

T1.1.2-2 Sums involving trigonometric functions

1

n



k=1

sin(2kx ) = sin[(n +1)x] sin(nx) cosec x.

2

n



k=0

cos(2kx ) = sin[(n +1)x] cos(nx) cosec x.

3

n



k=1

sin[(2k–1)x] = sin2(nx) cosec x.

4

n



k=1

cos[(2k–1)x] = sin(nx) cos(nx) cosec x.

5

n–1



k=0

sin(kx + a) = sin



n–1

2 x + a

 sin nx

2 cosec

x

2. 6

n–1



k=0

cos(kx + a) = cos



n–1

2 x + a

 sin nx

2 cosec

x

2. 7

2n–1

k=0

(–1)k cos(kx + a) = sin

2

n–1

2 x + a



sin(nx) sec x

2. 8

n



k=1

(–1)k+1sin[(2k–1)x] = (–1)n+1sin(2nx)

2cos x .

9

n



k=1

(–1)kcos(2kx) = –1

2 + (–1)n

cos[(2n+1)x]

2cos x .

10

n



k=1

sin2(kx) = n

2 –

cos[(n +1)x] sin(nx)

2sin x .

Trang 3

1118 FINITESUMS ANDINFINITESERIES

11

n



k=1

cos2(kx) = n

2 +

cos[(n +1)x] sin(nx)

2sin x .

12

n–1



k=1

ksin(2kx) = sin(2nx)

4sin2xncos[(2n–1)x]

2sin x .

13

n–1



k=1

kcos(2kx) = nsin[(2n–1)x]

2sin x

1– cos(2nx)

4sin2x 14

n–1



k=1

a k sin(kx) = a sin x – a n sin(nx) + a n+1sin[(n –1)x]

1–2a cos x + a2 .

15

n–1



k=0

a k cos(kx) = 1– a cos x – a n cos(nx) + a n+1cos[(n –1)x]

1–2a cos x + a2 .

16

n



k=0

C k

n sin(kx + a) =2ncosn x

2 sin



nx

2 + a



17

n



k=0

C k

n cos(kx + a) =2ncosn x

2 cos



nx

2 + a



18

n



k=0

(–1)k C k

n sin(kx + a) = (–2)nsinn x

2 sin



nx

2 +

πn

2 + a



19

n



k=0

(–1)k C k

n cos(kx + a) = (–2)nsinn x

2 cos



nx

2 +

πn

2 + a



20

n



k=1



2ksin2 x

2k

2

=



2nsin2 x

2n

2 – sin2x

21

n



k=0

1

2k tan

x

2k =

1

2n cot

x

2n –2cot(2x)

T1.2 Infinite Series

T1.2.1 Numerical Series

T1.2.1-1 Progressions

1



k=0

aq k = a

1– q, |q|<1 2



k=0

(a + bk)q k= a

1– q +

bq

(1– q)2, |q|<1

Trang 4

T1.2.1-2 Other numerical series.

1



n=0

(–1)n

n+1 = ln2.

2



n=0

(–1)n

2n+1 =

π

4. 3



n=1

1

n (n +1) =1

4



n=1

(–1)n

n (n +1) =1–2ln2

5



n=1

1

n (n +2) =

3

4. 6



n=1

(–1)n

n (n +2) = –

1

4. 7



n=1

1 (2n–1)(2n+1) =

1

2. 8



n=1

1

n2 =

π2

6 . 9



n=1

(–1)n+1

n2 =

π2

12. 10



n=1

1

(2n–1)2 =

π2

8 . 11



n=1

1

n2+ a2 =

π

2a coth(πa) – 1

2a2. 12



n=1

1

n2– a2 = –

π

2a cot(πa) + 1

2a2. 13



k=1

1

k2n =

22n–1π2n

(2n)! |B2n|; the B2nare Bernoulli numbers

14



k=1

(–1)k+1

k2n =

(22n–1–12n

(2n)! |B2n|; the B2nare Bernoulli numbers

15



k=1

1

(2k–1)2n =

(22n–1–12n

2(2n)! |B2n|; the B2nare Bernoulli numbers

Trang 5

1120 FINITESUMS ANDINFINITESERIES

16



k=1

1

k2k = ln2

17



k=0

(–1)k

n2k =

n2

n2+1. 18



k=0

1

k! = e =2.71828 .

19



k=0

(–1)k

k! =

1

e =0.36787 .

20



k=1

k

(k +1)! =1

T1.2.2 Functional Series

T1.2.2-1 Power series

1



k=0

x k= 1

1– x, |x|<1

2



k=1

kx k= x

(1– x)2, |x|<1 3



k=1

k2x k= x (x +1)

(1– x)3 , |x|<1 4



k=1

k3x k= x(1+4x + x2)

(1– x)4 , |x|<1 5



k=0

( 1)k k n x k=

x d dx

n 1

1x, |x|<1 6



k=1

x k

k = – ln(1– x), –1 ≤x<1

7



k=1

(–1)k–1x k

k = ln(1+ x), |x|<1 8



k=1

x2k–1

2k–1 =

1

2 ln

1+ x

1– x, |x|<1 9



k=1

(–1)k–1 x

2k–1

2k–1 = arctan x, |x| ≤ 1.

Trang 6



k=1

x k

k2 = –

 x 0

ln(1– t)

t dt, |x| ≤ 1 11



k=1

x k+1

k (k +1) = x + (1– x) ln(1– x), |x| ≤ 1

12



k=1

x k+2

k (k +2) =

x

2 +

x2

4 +

1

2(1– x2) ln(1– x), |x| ≤ 1. 13



k=0

x k

k! = e

x, xis any number.

14



k=0

x2k

(2k)! = cosh x, xis any number.

15



k=0

(–1)k x

2k

(2k)! = cos x, xis any number.

16



k=0

x2k+1

(2k+1)! = sinh x, xis any number.

17



k=0

(–1)k x

2k+1 (2k+1)! = sin x, xis any number.

18



k=0

x k+1

k ! (k +1) = e

x–1, xis any number

19



k=0

x k+2

k ! (k +2) = (x –1)e x+1, xis any number

20



k=0

(–1)k x

2k+1

k! (2k+1) =

√ π

2 erf x, xis any number.

21



k=0

(k + a) n

k! x

k=

d n

dt n exp(at + xe t



t=0, xis any number.

22



k=1

22k(22k–1)|B2k|

(2k)! x

2k–1= tan x; the B

2kare Bernoulli numbers, |x|< π/2

23



k=1

(–1)k–122k(22k–1)|B2k|

(2k)! x

2k–1= tanh x; the B

2kare Bernoulli numbers,|x|< π/2

24



k=1

22k|B2k|

(2k)! x

2k–1= 1

x – cot x; the B2kare Bernoulli numbers, 0<|x|< π.

25



k=1

(–1)k–122k|B2k|

(2k)! x

2k–1= coth x – 1

x; the B2kare Bernoulli numbers, |x|< π.

Trang 7

1122 FINITESUMS ANDINFINITESERIES

T1.2.2-2 Trigonometric series in one variable involving sine

1



k=1

1

k sin(kx) = 1

2(π – x), 0< x <2π. 2



k=1

(–1)k–1

k sin(kx) = 1

2x, –π < x < π.

3



k=1

a k

k sin(kx) = arctan a sin x

1– a cos x, 0< x <2π, |a| ≤ 1 4



k=0

1

2k+1 sin(kx) =

π

4 cos

x

2 – sin

x

2 ln

 cot2 x 4

 , 0< x <2π

5



k=0

(–1)k

2k+1 sin(kx) = –

1

4 cos

x

2 ln

 cot2 x + π 4

 – π

4 sin

x

2, –π < x < π.

6



k=1

1

k2 sin(kx) = –

 x

0 ln



2sin t 2



dt, 0 ≤x < π.

7



k=1

(–1)k

k2 sin(kx) = –

 x

0 ln



2cos t 2



dt, –π < x < π.

8



k=1

1

k (k +1) sin(kx) = (π – x) sin

2 x

2 + sin x ln



2sin x 2

 , 0 ≤x≤ 2π

9



k=1

(–1)k

k (k +1) sin(kx) = –x cos

2 x

2 + sin x ln



2cosx 2

 , –πxπ

10



k=1

k

k2+ a2 sin(kx) =

π

2sinh(πa) sinh[a(π – x)], 0< x <2π 11



k=1

(–1)k+1 k

k2+ a2 sin(kx) =

π

2sinh(πa) sinh(ax), –π < x < π.

12



k=1

k

k2– a2 sin(kx) =

π

2sin(πa) sin[a(π – x)], 0< x <2π 13



k=1

(–1)k+1 k

k2– a2 sin(kx) =

π

2sin(πa) sin(ax), –π < x < π.

14



k=2

(–1)k k

k2–1 sin(kx) =

1

4 sin x +

1

2x cos x, –π < x < π.

15



k=1

1

k2n+1 sin(kx) =

(–1)n–1(2π)2n+1

2(2n+1)! B2n+1



x

2π

 , where0 ≤x≤ 2π for n =1, 2, ; 0< x <2π for n =0; and the B n (x) are Bernoulli

polynomials

Ngày đăng: 02/07/2014, 13:20

🧩 Sản phẩm bạn có thể quan tâm