1. Trang chủ
  2. » Khoa Học Tự Nhiên

Handbook of mathematics for engineers and scienteists part 145 ppsx

7 91 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 376,32 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Series Representation of the Jacobi Theta Functions.. Definition of the Jacobi theta functions.. The theta functions are not elliptic functions.. The very good convergence of their serie

Trang 1

976 SPECIALFUNCTIONS ANDTHEIRPROPERTIES

cn u = 2π

kK√ q



n=1

q n

1+ q2n–1 cos

 (2n–1)πu

2K

 ,

dn u = π

2K + 2π

K



n=1

q n

1+ q2n cos



nπu

K

 ,

am u = πu

2K +2

n=1

1

n

q n

1+ q2n sin



nπu

K

 ,

where q = exp(–πK /K),K=K(k),K =K(k  ), and k  =

1– k2

18.14.1-11 Derivatives and integrals

Derivatives:

d

du sn u = cn u dn u, d

du cn u = – sn u dn u, d

du dn u = –k2sn u cn u.

sn u du = 1

k ln(dn u – k cn u) = –1

k ln(dn u + k cn u),



cn u du = 1

k arccos(dn u) = 1

k arcsin(k sn u),



dn u du = arcsin(sn u) = am u.

The arbitrary additive constant C in the integrals is omitted.

18.14.2 Weierstrass Elliptic Function

18.14.2-1 Infinite series representation Some properties

The Weierstrass elliptic function (or Weierstrass ℘-function) is defined as

℘ (z) = ℘(z|ω1, ω2) = 1

z2 +



m,n

(z –21–22)2 –

1

(21+22)2

 ,

where the summation is assumed over all integer m and n, except for m = n =0 This

function is a complex, double periodic function of a complex variable z with periods2ω1

and2ω1:

℘ (–z) = ℘(z),

℘ (z +21+22) = ℘(z),

where m, n = 0, 1, 2, and Im(ω21) ≠ 0 The series defining the Weierstrass ℘-function converges everywhere except for second-order poles located at z mn=21+22.

Argument addition formula:

℘ (z1+ z2) = –℘(z1) – ℘(z2) + 1

4



℘  (z1) – ℘  (z2)

℘ (z1) – ℘(z2)

2

Trang 2

18.14.2-2 Representation in the form of a definite integral.

The Weierstrass function ℘ = ℘(z, g2, g3) = ℘(z|ω1, ω2) is defined implicitly by the elliptic integral:

z=

dt

4t3– g2t – g3 =



dt

2√ (t – e1)(t – e2)(t – e3).

The parameters g2and g3are known as the invariants.

The parameters e1, e2, e3, which are the roots of the cubic equation4z3– g2z – g3=0,

are related to the half-periods ω1, ω2and invariants g2, g3by

e1= ℘(ω1), e2= ℘(ω1+ ω2), e1= ℘(ω2),

e1+ e2+ e3 =0, e1e2+ e1e3+ e2e3= –14g2, e1e2e3= 14g3.

Homogeneity property:

℘ (z, g2, g3) = λ2℘ (λz, λ–4g2, λ–6g3).

18.14.2-3 Representation as a Laurent series Differential equations

The Weierstrass ℘-function can be expanded into a Laurent series:

℘ (z) = 1

z2 +

g2

20z2+

g3

28z4+

g2 2

1200z6+

3g2g3

6160 z8+· · · =

1

z2 +



k=2

a k z2k–2,

(k –3)(2k+1)

k–2



m=2

a m a k–m for k≥ 4, 0<|z|< min(|ω1|,|ω2|)

The Weierstrass ℘-function satisfies the first-order and second-order nonlinear

differen-tial equations:

(℘  z)2=43– g

2℘ – g3,

℘ 

zz =62– 1

2g2.

18.14.2-4 Connection with Jacobi elliptic functions

Direct and inverse representations of the Weierstrass elliptic function via Jacobi elliptic functions:

℘ (z) = e1+ (e1– e3)cn

2w

sn2w = e2+ (e1– e3)dn

2w

sn2w = e3+ e1– e3

sn2w ;

sn w = e1– e3

℘ (z) – e3, cn w =

!

℘ (z) – e1

℘ (z) – e3, dn w =

!

℘ (z) – e2

℘ (z) – e3;

w = z √

e1– e3=Kz/ω1.

The parameters are related by

k= e2– e3

e1– e3, k

= e1– e2

e1– e3, K= ω1

e1– e3, iK = ω

2

e1– e3.

Trang 3

978 SPECIALFUNCTIONS ANDTHEIRPROPERTIES

18.15 Jacobi Theta Functions

18.15.1 Series Representation of the Jacobi Theta Functions.

Simplest Properties

18.15.1-1 Definition of the Jacobi theta functions

The Jacobi theta functions are defined by the following series:

ϑ1(v) = ϑ1(v, q) = ϑ1(v|τ) = 2

n=0

(– 1 )n q(n+1/2 )2sin[( 2n+ 1)πv] = i



n=–∞

(– 1 )n q(n–1/2 )2e iπ(2n–1 )v,

ϑ2(v) = ϑ2(v, q) = ϑ2(v|τ) = 2

n=0

q(n+1/2 )2cos[( 2n+ 1)πv] =



n=–∞

q(n–1/2 )2e iπ(2n–1 )v,

ϑ3(v) = ϑ3(v, q) = ϑ3(v|τ) = 1 + 2

n=0

q n2cos( 2nπv) =



n=–∞

q n2e2iπnv,

ϑ4(v) = ϑ4(v, q) = ϑ4(v|τ) = 1 + 2

n=0

(– 1 )n q n2

cos( 2nπv) =



n=–∞

(– 1 )n q n2

e2iπnv,

where v is a complex variable and q = e iπτ is a complex parameter (τ has a positive

imaginary part)

18.15.1-2 Simplest properties

The Jacobi theta functions are periodic entire functions that possess the following properties:

ϑ1(v) odd, has period 2, vanishes at v = m + nτ ;

ϑ2(v) even, has period 2, vanishes at v = m + nτ + 12;

ϑ3(v) even, has period 1, vanishes at v = m + (n + 12)τ + 12;

ϑ4(v) even, has period 1, vanishes at v = m + (n + 12

Here, m, n =0, 1, 2,

Remark The theta functions are not elliptic functions The very good convergence of their series allows the computation of various elliptic integrals and elliptic functions using the relations given above in Paragraph 18.15.1-1.

18.15.2 Various Relations and Formulas Connection with Jacobi

Elliptic Functions

18.15.2-1 Linear and quadratic relations

Linear relations (first set):

ϑ1



v+ 1 2



= ϑ2(v), ϑ2



v+ 1 2



= –ϑ1(v),

ϑ3



v+ 1 2



= ϑ4(v), ϑ4



v+ 1 2



= ϑ3(v),

ϑ1



v+ τ

2



= ieiπ v+ τ4

ϑ4(v), ϑ2



v+ τ

2



= eiπ v+ τ4

ϑ3(v),

ϑ3



v+ τ

2



= eiπ v+ τ4

ϑ2(v), ϑ4



v+ τ

2



= ieiπ v+ τ4

ϑ1(v).

Trang 4

Linear relations (second set):

ϑ1(v|τ+1) = e iπ/4ϑ1(v|τ), ϑ2(v|τ +1) = e iπ/4ϑ2(v|τ),

ϑ3(v|τ +1) = ϑ4(v|τ), ϑ4(v|τ +1) = ϑ3(v|τ),

ϑ1

v

τ



–1

τ



= 1

i

τ

i e

iπv2/τ ϑ1(v|τ), ϑ2

v

τ



–1

τ



i e

iπv2/τ ϑ4(v|τ),

ϑ3

v

τ



–1

τ



i e

iπv2/τ ϑ3(v|τ), ϑ4

v

τ



–1

τ



i e

iπv2/τ ϑ2(v|τ)

Quadratic relations:

ϑ2

1(v)ϑ22(0) = ϑ24(v)ϑ23(0) – ϑ23(v)ϑ24(0),

ϑ2

1(v)ϑ23(0) = ϑ24(v)ϑ22(0) – ϑ22(v)ϑ24(0),

ϑ2

1(v)ϑ24(0) = ϑ23(v)ϑ22(0) – ϑ22(v)ϑ23(0),

ϑ2

4(v)ϑ24(0) = ϑ23(v)ϑ23(0) – ϑ22(v)ϑ22(0)

18.15.2-2 Representation of the theta functions in the form of infinite products

ϑ1(v) =2q0q1 4sin(πv)

n=1



1–2q2ncos(2πv ) + q4n

,

ϑ2(v) =2q0q1 4cos(πv)

n=1



1+2q2ncos(2πv ) + q4n

,

ϑ3(v) = q0



n=1



1+2q2n–1cos(2πv ) + q4n–2

,

ϑ4(v) = q0



n=1



1–2q2n–1cos(2πv ) + q4n–2

,

where q0= 

n=1(1– q2n)

18.15.2-3 Connection with Jacobi elliptic functions

Representations of Jacobi elliptic functions in terms of the theta functions:

sn w = ϑ3(0)

ϑ2(0)

ϑ1(v)

ϑ4(v), cn w =

ϑ4(0)

ϑ2(0)

ϑ2(v)

ϑ4(v), dn w =

ϑ4(0)

ϑ3(0)

ϑ3(v)

ϑ4(v), w=2Kv The parameters are related by

k= ϑ

2

2(0)

ϑ2

3(0), k

= ϑ24(0)

ϑ2

3(0), K=

π

2ϑ23(0), K = –iτK.

Trang 5

980 SPECIALFUNCTIONS ANDTHEIRPROPERTIES

TABLE 18.6 The Mathieu functions cen= cen (x, q) and se n= sen (x, q) (for odd n, functions

cenand senare 2π -periodic, and for even n, they are π-periodic); definite

eigenvalues a = a n (q) and a = b n (q) correspond to each value of parameter q

Mathieu functions Recurrence relationsfor coefficients Normalizationconditions

ce2n=



m=0

A22n mcos 2mx

qA22n = a2n A20n;

qA24n = (a2n– 4)A22n– 2qA20n;

qA22n m+2= (a2n– 4m2)A22n m –qA22n m–2, m≥ 2

(A20n)2+



m=0

(A22n m)2

=

2 if n =0

1 if n≥ 1

ce 2n+1 =



m=0

A22n+ m+11cos( 2m+ 1)x

qA23n+1= (a2n+1 – 1–q)A21n+1;

qA22n+ m+13= [a2n+1–( 2m+ 1 )2]A22n+ m+11 –qA22n+ m–11, m≥ 1



m=0

(A22n+ m+11)2= 1

se2n=



m=0

B22n msin 2mx,

se 0 = 0

qB42n = (b2n– 4)B22n;

qB22n m+2= (b2n– 4m2)B22m n –qB22m– n 2, m≥ 2



m=0

(B22m n)2= 1

se 2n+1 =



m=0

B22m+ n+11sin( 2m+ 1)x

qB32n+1= (b2n+1 – 1–q)B12n+1;

qB22n+ m+13= [b2n+1–( 2m+ 1 )2]B22n+ m+11 –qB22m– n+11, m≥ 1



m=0

(B22m+ n+11)2= 1

18.16 Mathieu Functions and Modified Mathieu

Functions

18.16.1 Mathieu Functions

18.16.1-1 Mathieu equation and Mathieu functions

The Mathieu functions cen (x, q) and se n (x, q) are periodical solutions of the Mathieu

equation

y 

xx + (a –2qcos2x )y =0

Such solutions exist for definite values of parameters a and q (those values of a are referred

to as eigenvalues) The Mathieu functions are listed in Table 18.6

18.16.1-2 Properties of the Mathieu functions

The Mathieu functions possess the following properties:

ce2n (x, –q) = (–1)nce2nπ

2– x, q

 , ce2n+1(x, –q) = (–1)nse2n+1π

2 – x, q

 ,

se2n (x, –q) = (–1)n–1se2n

π

2– x, q

 , se2n+1(x, –q) = (–1)nce2n+1

π

2 – x, q



Selecting sufficiently large number m and omitting the term with the maximum number

in the recurrence relations (indicated in Table 18.6), we can obtain approximate relations

for eigenvalues a n (or b n ) with respect to parameter q Then, equating the determinant of the corresponding homogeneous linear system of equations for coefficients A n m (or B m n) to

zero, we obtain an algebraic equation for finding a n (q) (or b n (q)).

Trang 6

For fixed real q≠ 0, eigenvalues a n and b nare all real and different, while

if q >0 then a0 < b1 < a1< b2 < a2<· · · ;

if q <0 then a0 < a1< b1< b2 < a2< a3 < b3< b4<· · ·

The eigenvalues possess the properties

a2n (–q) = a2n (q), b2n (–q) = b2n (q), a2n+1(–q) = b2n+1(q).

Tables of the eigenvalues a n = a n (q) and b n = b n (q) can be found in Abramowitz and

Stegun (1964, chap 20)

The solution of the Mathieu equation corresponding to eigenvalue a n (or b n ) has n zeros

on the interval0 ≤x < π (q is a real number).

18.16.1-3 Asymptotic expansions as q →0and q → ∞.

Listed below are two leading terms of asymptotic expansions of the Mathieu functions

cen (x, q) and se n (x, q), as well as of the corresponding eigenvalues a n (q) and b n (q), as

q →0:

ce0(x, q) = 1

2



1– q

2 cos2x

 , a0(q) = – q

2

2 +

7q4

128;

ce1(x, q) = cos x – q

8cos3x, a1(q) =1+ q;

ce2(x, q) = cos2x+ q

4



1– cos4x

3

 , a2(q) =4+ 5q2

12 ;

cen (x, q) = cos nx + q

4



cos(n +2)x

cos(n –2)x

n–1

 , a n (q) = n2+ q

2

2(n2–1) (n≥ 3);

se1(x, q) = sin x – q

8 sin3x, b1(q) =1– q;

se2(x, q) = sin2x – qsin4x

12 , b2(q) =4–

q2

12;

sen (x, q) = sin nx – q

4



sin(n +2)x

sin(n –2)x

n–1

 , b n (q) = n2+ q

2

2(n2–1) (n≥ 3)

Asymptotic results as q → ∞ (–π/2< x < π/2):

a n (q)≈–2q+2(2n+1)

q+ 14(2n2+2n+1),

b n+1(q)≈–2q+2(2n+1)

q+ 14(2n2+2n+1),

cen (x, q)λ n q–1 4cos–n–1x

cos2n+1ξexp(2√ q sin x) + sin2n+1ξexp(–2√ q sin x)

,

sen+1(x, q)μ n+1q–1 4cos–n–1x

cos2n+1ξexp(2√ q sin x) – sin2n+1ξexp(–2√ q sin x)

,

where λ n and μ n are some constants independent of the parameter q, and ξ = 12x+ π4

Trang 7

982 SPECIALFUNCTIONS ANDTHEIRPROPERTIES

18.16.2 Modified Mathieu Functions

The modified Mathieu functions Cen (x, q) and Se n (x, q) are solutions of the modified

Mathieu equation

y 

xx – (a –2qcosh2x )y =0,

with a = a n (q) and a = b n (q) being the eigenvalues of the Mathieu equation (see Subsection

18.16.1)

The modified Mathieu functions are defined as

Ce2n+p (x, q) = ce2n+p (ix, q) =



k=0

A2n+p

2k+pcosh[(2k + p)x],

Se2n+p (x, q) = –i se2n+p (ix, q) =



k=0

B2n+p

2k+psinh[(2k + p)x],

where p may be equal to 0 and 1, and coefficients A22n+p k+p and B22n+p k+p are indicated in Subsection 18.16.1

18.17 Orthogonal Polynomials

All zeros of each of the orthogonal polynomialsP n (x) considered in this section are real

and simple The zeros of the polynomialsP n (x) and P n+1(x) are alternating.

For Legendre polynomials see Subsection 18.11.1

18.17.1 Laguerre Polynomials and Generalized Laguerre

Polynomials

18.17.1-1 Laguerre polynomials

The Laguerre polynomials L n = L n (x) satisfy the second-order linear ordinary differential

equation

xy 

xx+ (1– x)y x  + ny =0

and are defined by the formulas

L n (x) = 1

n!e

x d n

dx n x n ex

= (–1)n

n!



x n – n2x n–1+ n2(n –1)2

2! x

n–2+· · ·

 The first four polynomials have the form

L0(x) =1, L1(x) = –x +1, L2(x) = 12(x2–4x+2), L3(x) = 16(–x3+9x2–18x+6)

To calculate L n (x) for n≥ 2, one can use the recurrence formulas

L n+1(x) = 1

n+1

 (2n+1– x)L n (x) – nL n–1(x)

The functions L n (x) form an orthonormal system on the interval 0 < x < ∞ with

0 e

x L

n (x)L m (x) dx =

0

if nm,

1 if n = m.

The generating function is

1

1– sexp

 – sx

1– s



=



n=0

L n (x)s n, |s|<1

... exist for definite values of parameters a and q (those values of a are referred

to as eigenvalues) The Mathieu functions are listed in Table 18.6

18.16.1-2 Properties of the... →0and q → ∞.

Listed below are two leading terms of asymptotic expansions of the Mathieu functions

cen (x, q) and se n (x, q), as well as of the...

All zeros of each of the orthogonal polynomialsP n (x) considered in this section are real

and simple The zeros of the polynomialsP n (x) and P n+1(x)

Ngày đăng: 02/07/2014, 13:20

🧩 Sản phẩm bạn có thể quan tâm