1. Trang chủ
  2. » Khoa Học Tự Nhiên

Handbook of mathematics for engineers and scienteists part 142 ppsx

7 113 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 402,37 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Integrals with modified Bessel functions.. Airy functions of the first and the second kinds.. Degenerate Hypergeometric Functions Kummer Functions 18.9.1.. Table 18.1 presents some speci

Trang 1

18.7.2-2 Asymptotic expansions as x → ∞.

I ν (x) = e

x

2πx



1+

M



m=1

(–1)m(4ν2–1)(4ν2–32) [4ν2– (2m–1)2]

m! (8x)m



,

K ν (x) = 2π x e

x

1+

M



m=1

(4ν2–1)(4ν2–32) [4ν2– (2m–1)2]

m! (8x)m



The terms of the order of O(xM–1) are omitted in the braces

18.7.2-3 Integrals with modified Bessel functions

 x

0

x λ I

ν (x) dx = x

λ+ν+1

2ν (λ + ν +1 )Γ(ν +1 )F



λ + ν +1

λ + ν +3

2 , ν +1;

x2

4



, Re(λ+ν) > –1 ,

where F (a, b, c; x) is the hypergeometric series (see Subsection 18.10.1),

 x

0 x

λ K

ν (x) dx = 2ν–1Γ(ν)

λ – ν +1x λ–ν+1F



λ – ν +1

2 , 1– ν,

λ – ν +3

x2 4



+ 2–ν–1Γ(–ν)

λ + ν +1 x λ+ν+1F



λ + ν +1

2 , 1+ ν,

λ + ν +3

x2 4



, Re λ >|Re ν|–1

18.8 Airy Functions

18.8.1 Definition and Basic Formulas

18.8.1-1 Airy functions of the first and the second kinds

The Airy function of the first kind, Ai(x), and the Airy function of the second kind, Bi(x),

are solutions of the Airy equation

y 

xx – xy =0

and are defined by the formulas

Ai(x) = 1

π



0 cos

1

3t3+ xt

dt,

Bi(x) = 1

π

 0



exp –13t3+ xt

+ sin 13t3+ xt 

dt

Wronskian: W{Ai(x), Bi(x)}=1

18.8.1-2 Relation to the Bessel functions and the modified Bessel functions

Ai(x) = 13

x

I–1 3(z) – I1 3(z)

= π–1

 1

3x K1 3(z), z= 23x3 2,

Ai(–x) = 13

x

J–1 3(z) + J1 3(z)

,

Bi(x) =

 1

3x



I–1 3(z) + I1 3(z)

,

Bi(–x) =

 1

3x



J–1 3(z) – J1 3(z)

Trang 2

18.8.2 Power Series and Asymptotic Expansions

18.8.2-1 Power series expansions as x →0

Ai(x) = c1f (x) – c2g (x), Bi(x) = √

3[c1f (x) + c2g (x)],

f (x) =1+ 1

3!x

3+ 1 × 4

6! x

6+ 1 × 4 × 7

9! x

9+· · · =

k=0

3k 1 3

k

x3k

(3k)!,

g (x) = x + 2

4!x

4+ 2 × 5

7! x

7+ 2 × 5 × 8

10! x

10+· · · =

k=0

3k 2 3

k

x3k+1

(3k+1)!,

where c1=3– 2 3/Γ(2/3)≈ 0.3550 and c2=3– 1 3/Γ(1/3) ≈ 0.2588

18.8.2-2 Asymptotic expansions as x → ∞.

For large values of x, the leading terms of asymptotic expansions of the Airy functions are

Ai(x)  12π–1 2x– 1 4exp(–z), z= 2

3x3 2,

Ai(–x)  π– 1 2x– 1 4sin z+ π

4

,

Bi(x)  π– 1 2x– 1 4exp(z),

Bi(–x)  π– 1 2x– 1 4cos z+ π

4

18.9 Degenerate Hypergeometric Functions (Kummer

Functions)

18.9.1 Definitions and Basic Formulas

18.9.1-1 Degenerate hypergeometric functionsΦ(a, b; x) and Ψ(a, b; x).

The degenerate hypergeometric functions (Kummer functions) Φ(a, b; x) and Ψ(a, b; x) are

solutions of the degenerate hypergeometric equation

xy 

xx + (b – x)y x  – ay =0

In the case b≠ 0, –1, –2, –3, , the function Φ(a, b; x) can be represented as Kummer’s

series:

Φ(a, b; x) =1+



k=1

(a) k (b) k

x k

k!,

where (a) k = a(a +1) (a + k –1), (a)0 =1

Table 18.1 presents some special cases whereΦ can be expressed in terms of simpler

functions

The functionΨ(a, b; x) is defined as follows:

Ψ(a, b; x) = Γ(a – b +Γ(1– b)1

)Φ(a, b; x) + Γ(b – Γ(a)1)x1 –b Φ(a – b +1, 2– b; x).

Table 18.2 presents some special cases whereΨ can be expressed in terms of simpler

functions

Trang 3

TABLE 18.1 Special cases of the Kummer functionΦ(a, b; z)

x e sinh x

Incomplete gamma function

γ (a, x) =

 x

0

et t a–1 dt

1

2

3

2 –x2

√ π

2 erf x

Error function

erf x = √2

π

 x

0 exp(–t2) dt

2

2

n! ( 2n )!

 – 1 2

 –n

H2n(x) Hermite polynomials

H n (x) = (–1 )n e 2 d

dx n e

x2 ,

n= 0 , 1 , 2,

2

2

n! ( 2n + 1 )!

 – 1 2

 –n

H2n+1(x)

(b) n L

(b–1)

n (x)

Laguerre polynomials

L(n α) (x) = e x

α

n!

d

dx n e

x x n+α ,

α = b–1 ,

(b) n = b(b+1) (b+n–1 )

ν+ 1

2 2ν+1 2x Γ(1+ν)e x

x 2

 –ν

I (x)

Modified Bessel functions

I (x)

n+ 1 2n + 2 2x Γn+ 3

2



e

x 2

 –n–1

I n+1(x)

18.9.1-2 Kummer transformation and linear relations

Kummer transformation:

Φ(a, b; x) = e x Φ(b – a, b; –x), Ψ(a, b; x) = x1–bΨ(1+ a – b,2– b; x).

Linear relations forΦ:

(b – a) Φ(a –1, b; x) + (2a – b + x) Φ(a, b; x) – aΦ(a +1, b; x) =0,

b (b –1)Φ(a, b –1; x) – b(b –1+ x) Φ(a, b; x) + (b – a)xΦ(a, b +1; x) =0,

(a – b +1)Φ(a, b; x) – aΦ(a +1, b; x) + (b –1)Φ(a, b –1; x) =0,

b Φ(a, b; x) – bΦ(a –1, b; x) – x Φ(a, b +1; x) =0,

b (a + x) Φ(a, b; x) – (b – a)xΦ(a, b +1; x) – ab Φ(a +1, b; x) =0,

(a –1+ x) Φ(a, b; x) + (b – a)Φ(a –1, b; x) – (b –1)Φ(a, b –1; x) =0

Linear relations forΨ:

Ψ(a –1, b; x) – (2a – b + x) Ψ(a, b; x) + a(a – b +1)Ψ(a +1, b; x) =0,

(b – a –1)Ψ(a, b –1; x) – (b –1+ x) Ψ(a, b; x) + xΨ(a, b +1; x) =0,

Ψ(a, b; x) – aΨ(a +1, b; x) – Ψ(a, b –1; x) =0,

(b – a) Ψ(a, b; x) – xΨ(a, b +1; x) + Ψ(a –1, b; x) =0,

(a + x) Ψ(a, b; x) + a(b – a –1)Ψ(a +1, b; x) – x Ψ(a, b +1; x) =0,

(a –1+ x) Ψ(a, b; x) – Ψ(a –1, b; x) + (a – c +1)Ψ(a, b –1; x) =0

Trang 4

TABLE 18.2 Special cases of the Kummer functionΨ(a, b; z)

Incomplete gamma function

Γ(a, x) =



x

et t a–1 dt

1

2

1

π exp(x2) erfc x

Complementary error function

erfc x = 2

√ π



x

exp(–t2) dt

Exponential integral

Ei(x) =

 x

e t

t dt

Logarithmic integral

li x =

 x

0

dt t

1

2–

n

2

3

2 x2 2–n x–1H n (x)

Hermite polynomials

H n (x) = (–1 )n e 2 d

dx n e

x2 ,

n= 0 , 1 , 2,

ν+ 1

2 2ν+1 2x π–1/2(2x)–ν x K ν (x) Modified Bessel functions

K ν (x)

18.9.1-3 Differentiation formulas and Wronskian

Differentiation formulas:

d

dx Φ(a, b; x) = a

b Φ(a +1, b +1; x), d

dx Ψ(a, b; x) = –aΨ(a +1, b +1; x),

d n

dx n Φ(a, b; x) = (a) n

(b) n Φ(a + n, b + n; x),

d n

dx n Ψ(a, b; x) = (–1)n (a) n Ψ(a + n, b + n; x).

Wronskian:

W(Φ, Ψ) = ΦΨ x–Φ xΨ = –Γ(a) Γ(b) xb e x.

18.9.1-4 Degenerate hypergeometric functions for n =0,1,2,

Ψ(a, n +1; x) = (–1)n–1

n!Γ(a – n)



Φ(a, n+1; x) ln x

+



r=0

(a) r

(n +1)r



ψ (a + r) – ψ(1+ r) – ψ(1+ n + r)  x r

r!



+ (n –1)!

Γ(a)

n–1



r=0

(a – n) r

(1– n) r

x r–n

r! ,

where n =0, 1, 2, (the last sum is dropped for n =0), ψ(z) = [ln Γ(z)] 

zis the logarithmic

derivative of the gamma function,

ψ(1) = –C, ψ(n) = –C +

n–1



k=1

k–1,

whereC =0.5772 . is the Euler constant

Trang 5

If b <0, then the formula

Ψ(a, b; x) = x1–b Ψ(a – b +1, 2– b; x)

is valid for any x.

For b≠ 0, –1, –2, –3, , the general solution of the degenerate hypergeometric equation

can be represented in the form

y = C1Φ(a, b; x) + C2Ψ(a, b; x),

and for b =0, –1, –2, –3, , in the form

y = x1–b

C1Φ(a – b +1, 2– b; x) + C2Ψ(a – b +1, 2– b; x)

18.9.2 Integral Representations and Asymptotic Expansions

18.9.2-1 Integral representations

Φ(a, b; x) = Γ(a) Γ(b – a) Γ(b)

 1

0 e

xt t a–1(1– t) b–a–1dt (for b > a >0),

Ψ(a, b; x) = 1

Γ(a)



0 ext t a–1(1+ t) b–a–1dt (for a >0, x >0), whereΓ(a) is the gamma function.

18.9.2-2 Asymptotic expansion as|x|→ ∞.

Φ(a, b; x) = Γ(a) Γ(b) e x x a–bN

n=0

(b – a) n(1– a) n

n + ε

, x>0,

Φ(a, b; x) = Γ(b – a) Γ(b) (–x)a

N

n=0

(a) n (a – b +1)n

n! (–x)

n + ε

, x<0,

Ψ(a, b; x) = xaN

n=0

(–1)n (a) n (a – b +1)n

n + ε

, –∞ < x < ∞, where ε = O(xN–1)

18.9.2-3 Integrals with degenerate hypergeometric functions



Φ(a, b; x) dx = b–1

a–1Ψ(a –1, b –1; x) + C,



Ψ(a, b; x) dx = 11

– a Ψ(a –1, b –1; x) + C,



x n Φ(a, b; x) dx = n! n+

1



k=1

(–1)k+1(1– b) k x n–k+1

(1– a) k (n – k +1)! Φ(a – k, b – k; x) + C,



x n Ψ(a, b; x) dx = n! n+

1



k=1

(–1)k+1x n–k+1

(1– a) k (n – k +1)!Ψ(a – k, b – k; x) + C.

Trang 6

18.9.3 Whittaker Functions

The Whittaker functions M k,μ (x) and W k,μ (x) are linearly independent solutions of the

Whittaker equation:

y 

xx+



–14 + 12k+ 14 – μ2

x–2

y=0 The Whittaker functions are expressed in terms of degenerate hypergeometric functions as

M k,μ (x) = x μ+1 2ex/2Φ 12 + μ – k,1+2μ ; x

,

W k,μ (x) = x μ+1 2ex/2Ψ 12 + μ – k,1+2μ ; x

18.10 Hypergeometric Functions

18.10.1 Various Representations of the Hypergeometric Function

18.10.1-1 Representations of the hypergeometric function via hypergeometric series

The hypergeometric function F (α, β, γ; x) is a solution of the Gaussian hypergeometric

equation

x (x –1)y xx  + [(α + β +1)x – γ]y  x + αβy =0

For γ ≠ 0, –1, –2, –3, , the function F (α, β, γ; x) can be expressed in terms of the

hypergeometric series:

F (α, β, γ; x) =1+



k=1

(α) k (β) k (γ) k

x k

k!, (α) k = α(α +1) (α + k –1), which certainly converges for|x|<1

If γ is not an integer, then the general solution of the hypergeometric equation can be

written in the form

y = C1F (α, β, γ; x) + C2x1 –γ F (α – γ +1, β – γ +1, 2– γ; x).

Table 18.3 shows some special cases where F can be expressed in term of elementary

functions

18.10.1-2 Integral representation

For γ > β >0, the hypergeometric function can be expressed in terms of a definite integral:

F (α, β, γ; x) = Γ(γ)

Γ(β) Γ(γ – β)

 1

0 t

β–1(1– t) γ–β–1(1– tx)α dt, whereΓ(β) is the gamma function.

18.10.2 Basic Properties

18.10.2-1 Linear transformation formulas

F (α, β, γ; x) = F (β, α, γ; x),

F (α, β, γ; x) = (1– x) γ–α–β F (γ – α, γ – β, γ; x),

F (α, β, γ; x) = (1– x)α F



α , γ – β, γ; x

x–1



,

F (α, β, γ; x) = (1– x)β F



β , γ – α, γ; x

x–1



Trang 7

TABLE 18.3

Some special cases where the hypergeometric function F (α, β, γ; z)

can be expressed in terms of elementary functions.

n



k=0

(–n) k (β) k (γ) k

x k

k!, where n =1 , 2,

n



k=0

(–n) k (β) k (–n – m) k

x k

k!, where n =1 , 2,



1 +

1– x

2

–2α

1– x



1 +

1– x

2

1– 2α

α α+12 32 x2 (1+ x)1– 2α – ( 1– x)1– 2α

2x ( 1 – 2α )

2

 ( 1+ x)–2α+ ( 1– x)–2α

1– x 2– 2α

(α –1 ) sin( 2x )

α 1– α 12 –x2 1+ x2+ x 2α–1

+ 1+ x2– x 2α–1

21+ x2

(α –1 ) sin( 2x )

cos x

2 1+ x2+ x

+ 1+ x2– x 2α

x ln(x +1 )

1

2xln

1+ x

1– x

1

x arctan x

1

x arcsin x

1

x arcsinh x

n+ 1 n + m +1 n + m + l +2 x

(– 1 )m (n + m + l +1 )!

n ! l! (n + m)! (m + l)!

d n+m

dx n+m

 ( 1– x) m+l d

l F

dx l

 ,

F = –ln(1– x)

x , n , m, l =0 , 1 , 2,

Ngày đăng: 02/07/2014, 13:20

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm