1. Trang chủ
  2. » Luận Văn - Báo Cáo

Lớp 10 chuyên Đề 4 1 bất phương trình bậc hai một Ẩn

75 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bất phương trình bậc hai một ẩn
Trường học Trường Đại học XYZ
Chuyên ngành Toán học
Thể loại Bài giảng giáo dục
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 75
Dung lượng 1,5 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

▶ Chú ý: Khi xét dấu của tam thức bậc hai, ta có thể dùng biệt thức thu gọn thay cho biệt thức.. Chú ý Xét dấu tam thức bậc hai ta làm các bước: Nhận xét... ▶ Chú ý: Khi xét dấu của t

Trang 1

TOÁN TỪ TÂM

bậc hai một ân bậc hai một ân

Trang 2

MỤC LỤC Bài 1 KHÁI NIỆM VECTƠ

A Lý thuyết

B Các dạng bài tập

 Dạng 1 Tìm nghiệm và biệt thức của tam thức bậc hai 4

 Dạng 2 Xét dấu tam thức bậc hai 6

 Dạng 3 Điều kiện của tham số để tam thức bậc hai có dấu không đổi 11

C Luyện tập A Câu hỏi – Trả lời trắc nghiệm 15

B Câu hỏi – Trả lời đúng/sai 17

C Câu hỏi – Trả lời ngắn 19

Bài 2 BẤT PHƯƠNG TRÌNH BẬC HAI & PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI A Lý thuyết 1 Bất phương trình bậc hai 22

2 Giải bất phương trình bậc hai 22

3 Phương trình dạng ax2bx c  dx2exf 22

4 Phương trình dạng ax2bx c dx e 23

B Các dạng bài tập  Dạng 1 Giải bất phương trình bậc hai 24

 Dạng 2 Tìm tham số để tam thức bậc hai luôn âm – dương 26

 Dạng 3 Giải phương trình quy về phương trình bậc hai 29

C Luyện tập A Câu hỏi – Trả lời trắc nghiệm 33

B Câu hỏi – Trả lời đúng/sai 37

C Câu hỏi – Trả lời ngắn 39

Trang 3

DẤU CỦA TAM THỨC BẬC HAI Bài 1

Dấu của tam thức bậc hai:

Trong đó là hai nghiệm của

x1 x2

Cùng dấu

Cùng dấuTrái

dấu

Trang 4

Trang 5

≫ Bước ⑴: Tính và xác định dấu của biệt thức ;

≫ Bước ⑵: Xác định nghiệm của (nếu có);

≫ Bước ⑶: Xác định dấu của hệ số ;

≫ Bước ⑷: Xác định dấu của

▶ Chú ý: Khi xét dấu của tam thức bậc hai, ta có thể dùng biệt thức thu gọn thay cho

biệt thức

Chú ý Xét dấu tam thức bậc hai ta làm các bước:

Nhận xét

Trang 6

≫ Bước ⑴: Tính và xác định dấu của biệt thức ;

≫ Bước ⑵: Xác định nghiệm của (nếu có);

≫ Bước ⑶: Xác định dấu của hệ số ;

≫ Bước ⑷: Xác định dấu của

▶ Chú ý: Khi xét dấu của tam thức bậc hai, ta có thể dùng biệt thức thu gọn thay cho

biệt thức

Chú ý Xét dấu tam thức bậc hai ta làm các bước:

Nhận xét

Trang 7

 Lời giải

Ví dụ 1.2

Tìm biệt thức và nghiệm (nếu có) của các tam thức bậc hai sau:

Trang 8

 Lời giải

Cho » Nếu thì luôn cùng dấu với hệ số , với mọi » Nếu thì luôn cùng dấu với hệ số , với mọi » Nếu thì luôn: ▪ Cùng dấu với hệ số khi

Trong đó là hai nghiệm của

Phương pháp

Ví dụ 2.1

Xét dấu của các tam thức sau:

Trang 9

Trang 10

 Lời giải

Ví dụ 1.2

Tìm biệt thức và nghiệm (nếu có) của các tam thức bậc hai sau:

Trang 11

 Dạng 1 Tìm nghiệm và biệt thức của tam thức bậc hai

 Lời giải

Các dạng bài tập

Phương pháp

Ví dụ 1.1

Tìm biệt thức và nghiệm của các tam thức bậc hai sau

Trang 12

 Lời giải

Ví dụ 2.3

Xét dấu các biểu thức sau:

Trang 13

 Lời giải

Ví dụ 2.2

Xét dấu các biểu thức sau:

Trang 14

≫ Bước ⑴: Tính và xác định dấu của biệt thức ;

≫ Bước ⑵: Xác định nghiệm của (nếu có);

≫ Bước ⑶: Xác định dấu của hệ số ;

≫ Bước ⑷: Xác định dấu của

▶ Chú ý: Khi xét dấu của tam thức bậc hai, ta có thể dùng biệt thức thu gọn thay cho

biệt thức

Chú ý Xét dấu tam thức bậc hai ta làm các bước:

Nhận xét

Trang 15

≫ Bước ⑴: Tính và xác định dấu của biệt thức ;

≫ Bước ⑵: Xác định nghiệm của (nếu có);

≫ Bước ⑶: Xác định dấu của hệ số ;

≫ Bước ⑷: Xác định dấu của

▶ Chú ý: Khi xét dấu của tam thức bậc hai, ta có thể dùng biệt thức thu gọn thay cho

biệt thức

Chú ý Xét dấu tam thức bậc hai ta làm các bước:

Nhận xét

Trang 16

 Lời giải

Ví dụ 2.2

Xét dấu các biểu thức sau:

Trang 17

 Lời giải

Ví dụ 2.2

Xét dấu các biểu thức sau:

Trang 18

 Dạng 1 Tìm nghiệm và biệt thức của tam thức bậc hai

 Lời giải

Các dạng bài tập

Phương pháp

Ví dụ 1.1

Tìm biệt thức và nghiệm của các tam thức bậc hai sau

Trang 19

 Lời giải

Ví dụ 2.3

Xét dấu các biểu thức sau:

Trang 20

 Lời giải

Ví dụ 2.3

Xét dấu các biểu thức sau:

Trang 21

Trang 22

≫ Bước ⑴: Tính và xác định dấu của biệt thức ;

≫ Bước ⑵: Xác định nghiệm của (nếu có);

≫ Bước ⑶: Xác định dấu của hệ số ;

≫ Bước ⑷: Xác định dấu của

▶ Chú ý: Khi xét dấu của tam thức bậc hai, ta có thể dùng biệt thức thu gọn thay cho

biệt thức

Chú ý Xét dấu tam thức bậc hai ta làm các bước:

Nhận xét

Trang 23

 Dạng 2 Xét dấu tam thức bậc hai

 Lời giải

Trong đó là hai nghiệm của

Trang 24

 Dạng 1 Tìm nghiệm và biệt thức của tam thức bậc hai

 Lời giải

Trang 25

≫ Bước ⑴: Tính và xác định dấu của biệt thức ;

≫ Bước ⑵: Xác định nghiệm của (nếu có);

≫ Bước ⑶: Xác định dấu của hệ số ;

≫ Bước ⑷: Xác định dấu của

▶ Chú ý: Khi xét dấu của tam thức bậc hai, ta có thể dùng biệt thức thu gọn thay cho

biệt thức

Chú ý Xét dấu tam thức bậc hai ta làm các bước:

Nhận xét

Trang 26

 Dạng 1 Tìm nghiệm và biệt thức của tam thức bậc hai

 Lời giải

Trang 27

 Dạng 1 Tìm nghiệm và biệt thức của tam thức bậc hai

 Lời giải

Trang 28

 Lời giải

Trang 29

 Lời giải

Trang 30

 Lời giải

Trong đó là hai nghiệm của

Trang 31

 Dạng 2 Xét dấu tam thức bậc hai

 Lời giải

Trong đó là hai nghiệm của

Trang 32

 Lời giải

Ví dụ 1.2

Tìm biệt thức và nghiệm (nếu có) của các tam thức bậc hai sau:

Trang 33

≫ Bước ⑴: Tính và xác định dấu của biệt thức ;

≫ Bước ⑵: Xác định nghiệm của (nếu có);

≫ Bước ⑶: Xác định dấu của hệ số ;

≫ Bước ⑷: Xác định dấu của

▶ Chú ý: Khi xét dấu của tam thức bậc hai, ta có thể dùng biệt thức thu gọn thay cho

biệt thức

Chú ý Xét dấu tam thức bậc hai ta làm các bước:

Nhận xét

Trang 34

 Lời giải

Trong đó là hai nghiệm của

Trang 35

Trang 36

 Lời giải

Trang 37

 Lời giải

Trang 38

 Lời giải

Ví dụ 1.2

Tìm biệt thức và nghiệm (nếu có) của các tam thức bậc hai sau:

Trang 39

 Lời giải

Ví dụ 1.2

Tìm biệt thức và nghiệm (nếu có) của các tam thức bậc hai sau:

Trang 40

 Lời giải

Trang 41

 Dạng 1 Tìm nghiệm và biệt thức của tam thức bậc hai

 Lời giải

Trang 42

 Lời giải

Ví dụ 1.2

Tìm biệt thức và nghiệm (nếu có) của các tam thức bậc hai sau:

Trang 43

≫ Bước ⑴: Tính và xác định dấu của biệt thức ;

≫ Bước ⑵: Xác định nghiệm của (nếu có);

≫ Bước ⑶: Xác định dấu của hệ số ;

≫ Bước ⑷: Xác định dấu của

▶ Chú ý: Khi xét dấu của tam thức bậc hai, ta có thể dùng biệt thức thu gọn thay cho

biệt thức

Chú ý Xét dấu tam thức bậc hai ta làm các bước:

Nhận xét

Trang 44

≫ Bước ⑴: Tính và xác định dấu của biệt thức ;

≫ Bước ⑵: Xác định nghiệm của (nếu có);

≫ Bước ⑶: Xác định dấu của hệ số ;

≫ Bước ⑷: Xác định dấu của

▶ Chú ý: Khi xét dấu của tam thức bậc hai, ta có thể dùng biệt thức thu gọn thay cho

biệt thức

Chú ý Xét dấu tam thức bậc hai ta làm các bước:

Nhận xét

Trang 45

 Lời giải

Trang 46

 Lời giải

Ví dụ 1.2

Tìm biệt thức và nghiệm (nếu có) của các tam thức bậc hai sau:

Trang 47

 Dạng 1 Tìm nghiệm và biệt thức của tam thức bậc hai

 Lời giải

Trang 48

 Lời giải

Trong đó là hai nghiệm của

Trang 49

 Lời giải

Trang 50

 Lời giải

Trong đó là hai nghiệm của

Trang 51

 Lời giải

Ví dụ 1.2

Tìm biệt thức và nghiệm (nếu có) của các tam thức bậc hai sau:

Trang 52

 Dạng 1 Tìm nghiệm và biệt thức của tam thức bậc hai

 Lời giải

Trang 53

 Dạng 2 Xét dấu tam thức bậc hai

 Lời giải

Trong đó là hai nghiệm của

Trang 54

 Lời giải

Trang 55

 Lời giải

Trang 56

 Lời giải

Cho » Nếu thì luôn cùng dấu với hệ số , với mọi » Nếu thì luôn cùng dấu với hệ số , với mọi » Nếu thì luôn: ▪ Cùng dấu với hệ số khi

Trong đó là hai nghiệm của

Phương pháp

Ví dụ 2.1

Xét dấu của các tam thức sau:

Ngày đăng: 02/08/2025, 18:58

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w