1. Trang chủ
  2. » Giáo án - Bài giảng

Error analysis handout

39 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Error Analysis
Tác giả Dr. Lê Xuân Đại
Trường học Ho Chi Minh City University of Technology
Chuyên ngành Applied Mathematics
Thể loại Bài Giảng
Năm xuất bản 2018
Thành phố HCMC
Định dạng
Số trang 39
Dung lượng 345,6 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The errors of the sumThe errors of product 3 E XERCISES Exercises in writing form Multiple choice exercises... The deviation is the difference between approximate value and exact value:

Trang 1

ERROR ANALYSIS

ELECTRONIC VERSION OF LECTURE

Dr Lê Xuân Đại

HoChiMinh City University of Technology Faculty of Applied Science, Department of Applied Mathematics

Email: ytkadai@hcmut.edu.vn

HCMC — 2018.

Trang 2

The errors of the sum

The errors of product

3 E XERCISES

Exercises in writing form

Multiple choice exercises

Trang 3

R EAL WORLD PROBLEM

Trang 4

D EFINITION

DEFINITION 1.1

Suppose that a is an approximation to the exact value A. The deviation is the difference between approximate value and exact value:

a − A

DEFINITION 1.2

The number a is called an approximation of exact value A, we denote it byaA.

Trang 5

DEFINITION 1.3

The number ∆ = |a − A|is called actual error

In reality, we do not know exact value A, so

we can estimate actual error by a positive

that |A − a| É ∆ a Then the numbera is called

Note In engineering problems, we denote

exact value using absolute error by

A = a ± ∆

Trang 6

Therefore, there are many ways to choose

Trang 7

DEFINITION 1.4

exact value Ais the number which is less

than or equal to δ a, where δ a is defined by formula

δ a= |A − a|

|A| ·

|a|·So relative error É

a

|a|

Trang 8

EXAMPLE 1.2

If the lengths of 2 tables are a = 10cm and

b = 1cm respectively, wherea= ∆b = 0.01cm.Then

δ a = 0.01

10 = 0.1%; δ b= 0.01

hay δ b = 10δ a Therefore, the measurement of

a is better than that of b even thougha = ∆b

Trang 9

Machine numbers are represented in the normalized decimal form

Trang 10

DEFINITION 1.5

The error that results from replacing a

number with its floating-point form is called

round-off error regardless of whether the

rounding or chopping method is used.

k + 1st digit is 5or greater, then 1is added to

chopped.

Trang 11

EXAMPLE 1.4

The irrational number π has an infinite

decimal expansion of the form

π = 3.1415926535

The four-digit floating-point form of π

chopping is 3.1416

Trang 12

DEFINITION 1.6

The actual error of round-off ea and the

approximation a is called round-off error So

θ ae= |a −ea|.

|ea − a| + |a − A| É θea+ ∆a = ∆ea Since θ aeÊ 0 then

increases , so we just round and chop the last results.

Trang 13

R OUNDING FOR INEQUALITY

EXAMPLE 1.5

If a < 13.9236,we will round up 2 numbers after decimal point and receive a < 13.93.

If b > 78.6789, we will round down 2

numbers after decimal point and receive

b > 78.67.

Trang 14

E RROR OF FUNCTIONS OF 2 VARIABLES

Let ∆x = |X − x| ⇒ ∆x É ∆ x

Let ∆y = |Y − y| ⇒ ∆y É ∆ y

3 u = f (x,y)is an approximation of exact

Trang 16

Relative error of uis less than or equal to

Trang 17

F UNCTION OFnVARIABLES

x i , y (i = 1 n)be exact values of variables and function, and their approximations

Trang 18

Relative error of y is less than or equal to

Trang 19

EXAMPLE 2.1

Evaluate absolute error and relative error of the volume of the sphere V = 1

6πd3, if the diameter d = 3.70cm ± 0.05cm and

Trang 20

2× (3.14) × (3.70)2× 0.05 = 1.088172467

So the absolute error is less than or equal to

1.0882 The relative error is less than or

|v| = 0.04105009468 ≈ 0.0411.

|16× 3.14 × 3.703|

Trang 21

T HE ERRORS OF THE SUM

¯= 1, (i = 1 n). Therefore, absolute error

y = ∆x1+ ∆x2+ + ∆x n

and relative error of y is less than or equal to

δ y= ∆y

|y|.

Trang 23

Relative error of y is less than or equal to

δ y = ∆y

|y| = 0.003749722 ≈ 0.0038.

|47.132 + 47.111 + 45.234|

Trang 26

Therefore, absolute error of y is less than or equal to

y = δ y |y| = M × |47.132 × 47.111 × 45.234| =

1159.250261 ≈ 1159.2503

Trang 27

EXERCISE 1.1

If a = 1.85 has relative error δ a = 0.12%

Evaluate absolute error of a.

SOLUTION.

δ a = ∆a

|a| ⇒ ∆a = δ a × |a| = 0.12% × 1.85 = 0.00222

numbers, we obtain that absolute error of

a É 0.0023.

Trang 29

EXERCISE 1.3

If the sphere has radius of R = 5 ± 0.005(m)

and π = 3.14 ± 0.002.Evaluate absolute error and relative error of the volume of the

sphere.

Trang 30

Solution. Considering π and R variables of

Trang 31

Relative error is less than or equal to

δ v= ∆v

|v| = 0.003636942 ≈ 0.0037.

|43× 3.14 × 53|

Trang 34

EXERCISE 1.5

Let f (x) = 3x5− 2x2+ 7 andx = 1.234 ± 0.00015.

Evaluate absolute error of f (x).

f = |f0(x)|.∆ x

so

f = |15 × (1.234)4− 4 × 1.234| × 0.00015 =

= 0.004476868 ≈ 0.0045

Trang 36

The absolute error of a∗ is less than or equal to

a∗ = ∆a + θ a= δ a × |a| + |a− a| = 0.01969118.

Trang 38

The absolute error of f is less than or equal to

Trang 39

THANK YOU FOR YOUR ATTENTION

Ngày đăng: 14/05/2025, 21:37