Instrumenta-Reflecting the current state of the art, it describes the use of ments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analy-sis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes
Optical, Radiation, Chemical, and Biomedical Measurement
volume of the Second Edition:
• Contains contributions from field experts, new chapters, and updates to all 98 existing chapters
signal processing, displays and recorders, and optical, medical, biomedical, health, environmental, electrical, electromagnetic, and chemical variables
A concise and useful reference for engineers, scientists, academic faculty, students, designers, managers, and industry professionals involved in instrumentation and measurement research and
Hand-book, Second Edition: Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurementprovides readers with a greater understanding of advanced applications
Measurement, Instrumentation, and Sensors Handbook
Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurement
Trang 3CRC Press is an imprint of the
Taylor & Francis Group, an informa business
Boca Raton London New York
Trang 4does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S Government works
Version Date: 20140113
International Standard Book Number-13: 978-1-4398-4893-7 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.
Except as permitted under U.S Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy- ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
uti-For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400 CCC is a not-for-profit organization that provides licenses and registration for a variety of users For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
Trang 5Preface xiii Acknowledgments xv Editorsxvii Contributorsxix
Part I Sensors and Sensor technology
Trang 7Roberto Ambrosini, Stelio Montebugnoli, Claudio Bortolotti, and Mauro Roma
Part IV time and Frequency
Michael A Lombardi
Michael A Lombardi
Trang 8John A Nousek, M.W Bautz, B.E Burke, J.A Gregory, R.E Griffiths, R.L Kraft,
H.L. Kwok, and D.H Lumb
M.M Rad, Halit Eren, and Martin Maier
Part VI Chemical Variables
Trang 9Part VII Medical, Biomedical, and Health
James T Dobbins III, Sean M Hames, Bruce H Hasegawa, Timothy R DeGrado,
James A Zagzebski, and Richard Frayne
Trang 10Gourab Sen Gupta
Part IX Signal Processing
Trang 11Part X Displays and recorders
Trang 12Introduction
ThesecondeditionofThe Measurement, Instrumentation, and Sensors
Handbookcomesintwovol-umesThiseditionreflectsthestateoftheartinmeasurement,instrumentation,andsensorsInthistwo-volumeset,allchaptershavebeenupdatedand40newchaptershavebeenincludedtoprovidethefinestpossiblereferencethatisbothconciseandusefulforengineerspracticinginindustry,scientistsandengineersinvolvedinR&D,designers,collegeanduniversitypersonnelandstudents,aswellasmanagerstogetherwithmanyotherswhoareinvolvedininstrumentationandmeasurementdesignandapplications
mentation,andsensorsItdescribestheuseofinstrumentsandtechniquesforpracticalmeasurementsrequiredinengineering,physics,chemistry,environmentalscience,andthelifesciencesItalsoexplainssensors,techniques,hardware,andtheassociatedsoftwareThehandbookincludesinformationpro-cessingsystems,automaticdataacquisition,reductionandanalysis,operationcharacteristics,accuracy,errors,calibrations,standards,andtheirincorporationforcontrolpurposesEmphasisisgivenonmod-ernintelligentinstrumentsandtechniques,wirelessnetworkoperations,humanfactors,andmoderndisplaymethodsaswellasvirtualinstruments
Thehandbookcoversanextensiverangeoftopicsthatcomprisethesubjectofmeasurement,instru-surementTheyconsistofequationstoassistengineersandscientistswhoseektodiscoverapplicationsandsolveproblemsthatariseinfieldsnotintheirspecialtyTheyalsoincludespecializedinformationneededbyinformedspecialistswhoseektolearnadvancedapplicationsofthesubject,evaluativeopinions,andpossibleareasforfuturestudyThus,thehandbookservesthereferenceneedsofthebroadestgroupofusers—fromtheadvancedhighschoolsciencestudenttoindustrialanduniversityprofessionals
Thechaptersincludedescriptiveinformationforprofessionals,students,andworkersinterestedinmea-Organization
Inthisedition,thefirstvolumehas10parts,eachconsistingofseveralchapters,foratotalof96chapterswrittenbyexpertsintheirareasItconcentratesonconceptsininstrumentationandmeasurements,spatialvariablemeasurement,displacementmeasurement,mechanicalvariablemeasurement,acous-tics,flowandspotvelocity,thermalandtemperaturemeasurement,andradiationItreflectsrecenttrendsininstrumentationandmeasurementswiththeadditionofanewpartonwirelessinstrumenta-tionConceptsincontrolsystemsandhumanfactorsaregivenasaseparatepart
Thesecondvolumehas10parts,eachhavingseveralchapters,foratotalof98chapterswrittenbyexpertsintheirareasasinvolume1Itconcentratesonsensorsandsensortechnology,electricvariablemeasurement, electromagnetic variables, time and frequency, optical measurements, chemical vari-ables,andmedical,biomedicalandhealth,andenvironmentalmeasurementSignalprocessing,anddisplaysandrecordersconstitutethelasttwopartsofthisvolume
Trang 13Locating Your topic
Tofindouthowtomeasureagivenvariable,skimthetableofcontents,turntothatpart,andfindthechaptersthatdescribethedifferentmethodsofmakingthemeasurementConsiderthealternativemethodsofmakingthemeasurementandeachoftheiradvantagesanddisadvantagesSelectamethod,sensor,andsignalprocessingmethodManychapterslistanumberofvendorstocontactformoreinfor-mationYoucanalsovisithttp://wwwglobalspeccom/toobtainalistofvendors
For more detailed information, consult the index, since certain principles of measurement mayappearinmorethanonechapter
MATLAB®isaregisteredtrademarkofTheMathWorks,IncForproductinformation,pleasecontact:TheMathWorks,Inc
Trang 14Wewouldliketothankalltheauthorsfortheirvaluablecontributiontowardthistwo-volume-setbookWeappreciatethetimeandeffortdevotedbyallournewauthorsandthoseauthorswhowentanextramiletoreviseandupdatetheirchaptersWearegratefultotheCRCPressteamfortheirencouragementtopreparethissecondeditionThepublicationofthisbookwouldnothavebeenpossiblewithouttheirtirelessdedicationinputtingittogetherLast,butnotleast,wewouldliketothankallourreadersforselectingthisbookinadvancingtheirknowledgeandtechnicalskills
John G Webster Halit Eren
Editors
Trang 15John G WebsterreceivedhisBEEfromCornellUniversity,Ithaca,NewYork,in1953andhisMSEEand
PhDfromtheUniversityofRochester,Rochester,NewYork,in1965and1967,respectively
MadisonHeservesasahighlycitedresearcheratKingAbdulazizUniversity,Jeddah,SaudiArabia
HecurrentlyservesasprofessoremeritusofbiomedicalengineeringattheUniversityofWisconsin-ductsresearchonintracranialpressuremonitoring,ECGdryelectrodes,andtactilevibrators
He alsoteachesundergraduateandgraduatecoursesinthefieldofmedicalinstrumentationandcon-Dr Webster is author of Transducers and Sensors, an IEEE/EAB Individual Learning Program (Piscataway,NJ:IEEE,1989)Heiscoauthor,withBJacobson,ofMedicine and Clinical Engineering (EnglewoodCliffs,NJ:Prentice-Hall,1977);withRPallas-Areny,ofSensors and Signal Conditioning,
Second Edition(NewYork:Wiley,2001)andAnalog Signal Conditioning(NewYork:Wiley,1999)He
istheeditoroftheEncyclopedia of Medical Devices and Instrumentation, Second Edition(NewYork: Wiley,2006),Tactile Sensors for Robotics and Medicine(NewYork:Wiley,1988),Electrical Impedance
Tomography(Bristol,UK:AdamHilger,1990),Teaching Design in Electrical Engineering(Piscataway,
NJ:EducationalActivitiesBoard,IEEE,1990),Prevention of Pressure Sores: Engineering and Clinical
Aspects(Bristol,UK:AdamHilger,1991),Design of Cardiac Pacemakers(Piscataway,NJ:IEEEPress,
1995), Design of Pulse Oximeters (Bristol, UK: IOP Publishing, 1997), Medical Instrumentation:
Application and Design, Fourth Edition (Hoboken NJ: Wiley, 2010), Encyclopedia of Electrical and Electronics Engineering(NewYork,Wiley,1999),Minimally Invasive Medical Technology(Bristol,UK:
IOP Publishing, 2001), and Bioinstrumentation (Hoboken NJ: Wiley, 2004) He is also the coeditor, with AMCook,ofClinical Engineering: Principles and Practices(EnglewoodCliffs,NJ:Prentice-Hall, 1979)andTherapeutic Medical Devices: Application and Design(EnglewoodCliffs,NJ:Prentice-Hall, 1982);withWJTompkins,ofDesign of Microcomputer-Based Medical Instrumentation(Englewood Cliffs,NJ:Prentice-Hall,1981)andInterfacing Sensors to the IBM PC(EnglewoodCliffs,NJ:Prentice Hall,1988);andwithAMCook,WJTompkins,andGCVanderheiden,ofElectronic Devices for
Rehabilitation(London:Chapman&Hall,1985)
DrWebsterhasbeenamemberoftheIEEE-EMBSAdministrativeCommitteeandtheNIHSurgeryandBioengineeringStudySectionHeisafellowoftheInstituteofElectricalandElectronicsEngineers,theInstrumentSocietyofAmerica,theAmericanInstituteofMedicalandBiologicalEngineering,theBiomedicalEngineeringSociety,andtheInstituteofPhysicsHeistherecipientoftheIEEEEMBSCareerAchievementAward
Halit ErenreceivedhisBEngin1973,hisMEngin1975,andhisPhDin1978fromtheUniversityof
Sheffield,UnitedKingdomHeobtainedanMBAfromCurtinUniversityin1999
Afterhisgraduation,DrErenworkedinEtibank(aminingandmetallurgycompanyinTurkey)asaninstrumentationengineerfortwoyearsHeheldthepostofanassistantprofessoratHacettepeUniversityin 1980–1981 and at Middle East Technical University in 1982 He has been at Curtin University
Trang 16DrErenwasappointedasavisitingassociateprofessoratPolytechnicUniversity,HongKong,in2004andservedasavisitingprofessorattheUniversityofWisconsin,USA,in2013Heisaseniormem-berofIEEEandparticipatesinRegion10activities,invariouscommitteesfororganizingconferences,andmemberofeditorshipinseveraltransactionsDrErenhasover180publicationsinconference
proceedings,books,andtransactionsHeistheauthorofElectronic Portable Instruments—Design and
Applications(BocaRaton,FL:CRCPress,2004)andWireless Sensors and Instruments—Networks, Design and Applications(BocaRaton,FL:CRCPress,2006)Hehascoedited,withBelaLiptak,Instruments Engineers’ handbook—Process Software and Digital Networks,Vol3,edn4(BocaRaton,FL:CRCPress,
2011)HeisinvolvedinwritinganumberofbooksinthefieldofinstrumentationandmeasurementDrErenresearchesandpublishesonintelligentsensors,wirelessinstrumentation,wirelesssensornet-works,wirelessbiomedicaldevices,automationandcontrol,andverylargecontrolsystems
Trang 17L Basano
DepartmentofPhysicsUniversitàdiGenovaGenova,Italy
M.W Bautz
ThePennsylvaniaStateUniversityUniversityPark,Pennsylvania
David M Beams
DepartmentofElectricalEngineeringTheUniversityofTexasatTylerTyler,Texas
K Beilenhoff
InstitutfürHochfiequenztechnikTechnischeUniversitätDarmstadtMunich,Germany
Michael Bennett
CentreforAviation,Transportandthe
EnvironmentManchesterMetropolitanUniversityManchester,UnitedKingdom
Trang 18Tushar Kanti Bera
Robert M Crovella
NVIDIACorporationPlano,Texas
Timothy R DeGrado
DukeUniversityMedicalCenterDurham,NorthCarolina
Alfons Dehé
InstitutfürHochfiequenztechnikTechnischeUniversitätDarmstadtMunich,Germany
Alessandro Dionisi
DipartimentodiIngegneriadell’InformazioneUniversityofBrescia
Brescia,Italy
James T Dobbins III
DukeUniversityMedicalCenterDurham,NorthCarolina
F Domingue
Laboratoiredemicrosystèmeset
télécommunicationsLMST-UniversitéduQuébecàTrois-RivièresTrois-Rivières,Québec,Canada
Enrique Dorronzoro
DepartmentofElectronicTechnologyUniversityofSevilla
Seville,Spain
Achim Dreher
GermanAerospaceCenterWessling,Germany
Trang 19Richard Frayne
UniversityofWisconsin,MadisonMadison,Wisconsin
K Fricke
InstitutfürHochfiequenztechnikTechnischeUniversitätDarmstadtMunich,Germany
Alessandro Gandelli
DipartimentodiElettrotecnicaPolitecnicodiMilano
Milan,Italy
Julian W Gardner
SchoolofEngineeringUniversityofWarwickCoventry,UnitedKingdom
John D Garrison
SanDiegoStateUniversitySanDiego,California
Manel Gasulla
UniversitatPolitècnicadeCatalunyaBarcelona,Catalonia,Spain
W.A Gillespie
UniversityofAbertayDundeeDundee,Scotland
Olaf Glück
InstitutfürSchicht-undIonentechnikForschungszentrumJülichGmbHJülich,Germany
Trang 20Daniel Harrison
DepartmentofPhysicsJohnCarrollUniversityUniversityHeights,Ohio
H.L Hartnagel
InstitutfürHochfiequenztechnikTechnischeUniversitätDarmstadtMunich,Germany
Bruce H Hasegawa
UniversityofCalifornia,SanFranciscoSanFrancisco,California
Alireza Hassanzadeh
DepartmentofElectricalandComputer
EngineeringShahidBeheshtiUniversityTehran,Iran
Michael B Heaney
HuladyneResearchandConsultingPaloAlto,California
Albert D Helfrick
Embry–RiddleAeronauticalUniversityDaytonBeach,Florida
David A Hill
USDepartmentofCommerceNationalInstituteofStandardsandTechnologyBoulder,Colorado
Stanley S Ipson
DepartmentofElectronicandElectrical
EngineeringUniversityofBradfordWestYorkshire,UnitedKingdom
Rahman Jamal
NationalInstrumentsGermanyMunich,Germany
Roger Jones
PrimaryChildren’sMedicalCenterSaltLakeCity,Utah
Trang 21Carmine Landi
UniversitàdeL’AquilaL’Aquila,Italy
W Marshall Leach, Jr.
SchoolofElectricalandComputerEngineeringGeorgiaInstituteofTechnology
Atlanta,Georgia
Jin-Hwan Lee
IntelCorporationRancho,NewMexico
Sungyoung Lee
DepartmentofComputerEngineeringKyungHeeUniversity
Seoul,SouthKorea
Woo Hyoung Lee
DepartmentofCivil,Environmental,andConstructionEngineering
UniversityofCentralFloridaOrlando,Florida
Kathleen M Leonard
DepartmentofCivilandEnvironmental
EngineeringTheUniversityofAlabamainHuntsvilleHuntsville,Alabama
Yufeng Li
HDDR&DCenterSamsungInformationSystemsAmericaSanJose,California
Robert G Lindquist
DepartmentofElectricalandComputer
EngineeringTheUniversityofAlabamainHuntsvilleHuntsville,Alabama
E.B Loewenstein
NationalInstrumentsAustin,Texas
Trang 22Ana Verónica Medina
DepartmentofElectronicTechnologyUniversityofSevilla
Seville,Spain
Gerry H Meeten
SchlumbergerGouldResearchCambridge,UnitedKingdom
John T Mester
WWHansenExperimentalPhysicsLaboratoryStanfordUniversity
Stanford,California
Graham A Mills
SchoolofPharmacyandBiomedicalSciencesUniversityofPortsmouth
Portsmouth,UnitedKingdom
Jeffrey P Mills
IllinoisInstituteofTechnologyChicago,Illinois
Devendra K Misra
DepartmentofElectricalEngineeringandComputerScience
UniversityofWisconsin-MilwaukeeMilwaukee,Wisconsin
William C Moffatt
SandiaNationalLaboratoriesLivermore,California
Stelio Montebugnoli
InstituteofRadioastronomy,INAFBologna,Italy
Jerry Murphy
ElectronicMeasurementsDivisionHewlett-Packard
ColoradoSprings,Colorado
J Nagaraju
DepartmentofInstrumentationandAppliedPhysics
IndianInstituteofScience,BangaloreBangalore,India
Trang 23V Palmisano
EuropeanCommission-JRCInstitute
forEnergyPetten,theNetherlands
Ronney B Panerai
LeicesterRoyalInfirmaryUniversityofLeicesterLeicester,UnitedKingdom
Ian Papautsky
BioMicroSystemsLaboratorySchoolofElectronicandComputingSystemsUniversityofCincinnati
Cincinnati,Ohio
E Pasero
DepartmentofElectronicsand
TelecommunicationsPolitecnicodiTorinoTurin,Italy
Maria Teresa Penella
UrbioticaSL
Barcelona,Catalonia,Spain
B.W Petley
CentreforBasicMetrologyNationalPhysicalLaboratoryMiddlesex,UnitedKingdom
Thad Pickenpaugh
AirForceResearchLaboratoryWright-PattersonAirForceBase,Ohio
Luca Podestà
SapienzaUniversityofRomeRome,Italy
Arshak Poghossian
InstituteofNano-andBiotechnologiesAachenUniversityofAppliedSciencesAachen,Germany
Trang 24Terry L Rusch
DouglasScientificAlexandria,Minnesota
Giancarlo Sacerdoti
SapienzaUniversityofRomeRome,Italy
Ravi Sankar
DepartmentofElectricalEngineeringUniversityofSouthFlorida
Tampa,Florida
Sumita Santra
DepartmentofPhysicsandMeteorologyIndianInstituteofTechnology,KharagpurKharagpur,India
Emilio Sardini
DipartimentodiIngegneriadell’InformazioneUniversityofBrescia
Brescia,Italy
Kalluri R Sarma
DepartmentofAdvancedDisplaysHoneywell,Inc
Phoenix,Arizona
Michael J Schöning
InstituteofNano-andBiotechnologiesAachenUniversityofAppliedSciencesAachen,Germany
Fritz Schuermeyer
UnitedStatesAirForceWrightLaboratoryWright-PattersonAirForceBase,Ohio
Gourab Sen Gupta
SchoolofEngineeringandAdvancedTechnologyMasseyUniversity
PalmerstonNorth,NewZealand
Trang 25Michal Szyper
AGHUniversityofScienceandTechnologyand
UniversityofMiningandMetallurgyKracow,Poland
Nitish V Thakor
DepartmentofBiomedicalEngineeringSchoolofMedicine
JohnsHopkinsUniversityBaltimore,Maryland
Marion Thust
InstitutfürSchicht-undIonentechnikForschungszentrumJülichGmbHJülich,Germany
Michael F Toner
NortelNetworksNepean,Ontario,Canada
A Toriono
DepartmentofElectronicsand
TelecommunicationsPolitecnicodiTorinoTurin,Italy
E.E Uzgiris
GeneralElectricResearchandDevelopmentCenter
GeneralElectricCompanySchenectady,NewYork
Ramanapathy Veerasingam
ThePennsylvianaStateUniversityUniversityPark,Pennsylvania
Gert J.W Visscher
InstituteofAgriculturalandEnvironmentalEngineering
Wageningen,theNetherlands
Trang 26James A Zagzebski
DepartmentofMedicalPhysicsUniversityofWisconsin,MadisonMadison,Wisconsin
Trang 271 Soft Sensors: Software-Based Sensors Petr Kadlec1-1
Introduction • DataforSoftSensorDevelopment • Data-Driven
TechniquesforSoftSensorDevelopment • ApplicationsofSoft
Sensors • Conclusions • Acknowledgment • References
2 Implantable Systems Vincenzo Luciano, Emilio Sardini, Alessandro Dionisi,
Mauro Serpelloni, and Andrea Cadei2-1
Introduction • Architecture • ForceMeasurementinsideKneeProsthesis • Power
HarvestinginImplantableHumanTotalKneeProsthesis • Conclusions • References
3 Bio-Inspired and Life-Inspired Sensors Cesar Ortega-Sanchez and Halit Eren3-1
Introduction • Bio-InspiredSystems • Life-InspiredSystems • Semiconductor
Sensors • BiomedicalandBiologicalSensors • BiomimeticSensors • Signal
Processing • Bio-InspiredSensorsinIndustry • References
4 Image Sensors Mehdi Habibi4-1
Introduction • BasicPixelTrends • DigitalImageSensors • VisionSensorswith
ProcessingPower • FinalRemarks • References
5 Principles and Technology of SQUIDs Robert L Fagaly5-1
Superconductivity •SuperconductingQuantumInterferenceDevices(SQUID) • CryogenicRequirements • Applications • References • FurtherInformation
6 Next Generation of Smart Sensors Michael E Stanley and Stéphane
Gervais-Ducouret6-1
Introduction • NeedforSensorFusion • UseCases • Power
Considerations • IntegrationandPartitioningIssues • TrendandMarket
Segments • SummaryandConclusions • References • PartialListofSensor
Manufacturers
Trang 287 Needle-Type Environmental Sensors Woo Hyoung Lee, Jin-Hwan Lee,
Woo-Hyuck Choi, Ian Papautsky, and Paul L Bishop7-1
Introduction • MicroelectrodeSensors • AmperometricMicrosensors • Potentiometric Microsensors • DataAcquisitionand Processing • MEMS Sensor Arrays •
Introduction • Transducers • LiquidCrystalChemicalandBiological
Sensors • Conclusion • References
9 CMOS Integrated Gas Sensors Prasanta K Guha, Sumita Santra,
and Julian W. Gardner9-1
Introduction • Microhotplate-BasedGasSensors • InterfaceElectronics • Sensing
Materials • ConclusionandFutureOutlook • References
10 Energy Harvesting for Sensors: DC Harvesters Oscar Lopez-Lapeña,
Maria Teresa Penella, and Manel Gasulla10-1
PhotovoltaicEnergyHarvesting • ThermoelectricEnergyHarvesting • References
11 Energy Harvesting for Sensors: AC Harvesters Maria Teresa Penella,
Oscar Lopez-Lapeña, and Manel Gasulla 11-1
Introduction • RadiofrequencyEnergyHarvesting • MechanicalEnergy
Sensors • Conclusion • References
13 Thermal Sensors: Flow Nam-Trung Nguyen13-1
Introduction • PrinciplesofConventionalThermalMassFlowSensors • Analytical
ModelsforCalorimetricFlowSensing • CalibrationConditions • References
14 SQUID Magnetometers Robert L Fagaly14-1
CryogenicRequirements • MagneticFieldSensing • Geophysical
Applications • NondestructiveTestandEvaluation • MedicalApplicationsof
SQUID • DefiningTerms • References • FurtherInformation
15 Sensor Networks and Communication Robert M Crovella 15-1
Introduction • CommunicationandNetworkingConcepts • NetworkTechnologies •
ApplyingNetworkCommunications • RecentAdvances • References • FurtherInformation
Trang 291.1 Introduction
One of the major trends driving and driven by technological advancement is increasing use of thesensorsandinstrumentsintheworldaroundusExamplesofsensorsenablingtheproliferateduseofinstrumentsaroundtheglobeareingreatnumberpresentedinthischapterAconsequenceofthiseffectisthatincreasingamountofdigitaldataisavailableforfurtherprocessingandexploitationInfact,dataaredevelopingintoapreciouscommodity,whichisoftentradedatveryhighpriceThesedataaretheessenceofsoftsensorsdiscussedinthiswork,andassuchthereisastrongpressureonthequalityofthedataWithsomeexceptions(eg,[1]),algorithmsforsoftsensorsdevelopmentrequireasubstan-tialamountofhigh-qualityhistoricaldatainordertobeabletodevelopusefulsoftsensors,andyetatthesametimethequalityofreal-lifeindustrialdataisoftenverylowByanalyzingthedataobtainedfromtheirsources,oneveryoftenfindsdataimpuritieslikeoutliers,missingvalue,andmeasurementnoise[2]Thecausesoftheseissuesarenumerous:itcanbethephysicallimitsofthehardwaresensors,forexample,incaseofnoisydata,andhardwaresensorfailuresormaintenance,andincasesofmissingdataForthesereasons,thehistoricaldataoftenhavetobemanuallytreatedtoremovetheimpuritiesmentionedpreviously
tialbycreatingtheusefulinformationoutofthemThisprocessiscalledinformationextraction,anditisachievedbyapplyingmachinelearning[3]anddatamining[4]techniquestotherawdataThesemethodscaneitherbeunivariatewithasinglevariable,thatis,transformingasinglemeasurementstream(inputvariable)intoanothermeasurementstream(outputortargetvariable)Anexampleofsuchatechniqueisforecasting,wherebasedonpastvalues,thesoftsensoristryingtoforecastfuturevaluesofthesamevariableOther,morecommon,techniquesaremultivariatemethods,whichuse
Oncethedataarepretreated,theyshouldbereadytobeprocessedinordertoexploittheirfullpoten-1
Soft Sensors: Software-Based Sensors
Petr Kadlec
Evonik Industries
Trang 30Inparticularintheprocessindustry,softsensorshavebeenestablishedasusefultools,whichcanprovideadditionalinformationabouttheunderlyingprocessesOnecandistinguishtwofundamentallydifferentsoftsensortypes,namely,model-drivensoftsensorsanddata-drivensoftsensors[2]Thereareseveralothertermsthatcanbeusedforthesetwotypesofmodels;theseincludeparametricvsnonpara-metricmodels,whiteboxvsblackboxmodels[5],andphenomenologicalvsempiricalmodels [6]Themodel-drivensoftsensorsusethechemicalandphysicalprinciplesunderlyingtheprocessIngeneralifsuchknowledgeisavailableandexploitablefortherequiredpurposes,itshouldbeusedTheproblemisthat,inchemicalandmanyotherindustries,oftenthisisnotthecasebecausetheprocessesaretoocom-plextobedescribedbyrigorousmodelsintheformofmathematicalorchemicalequationsAprominentexampleofsuchprocesstypeisthebiochemicalprocessessuchaspenicillinproduction[7]
Forthisreason,thefocusofthisworkisonmultivariatedata-drivensoftsensorsThesemodelsrelyondatamodelingtechniquesandaretrainedondatacollectedduringtheoperationoftheprocessThemostcommondata-driventechniquesappliedforsoftsensormodelingaretheprincipalcomponentregres-sion(PCR),principalcomponentanalysis(PCA),andpartialleastsquares(PLS)method,whichwillbeexplainedlaterinthesectiondedicatedtodata-driventechniquesThesetechniquesgainedpopularityduetotheirstatisticalbackgroundandeaseofinterpretabilityofthemodelandbecausetheydealefficientlywithdatacolinearity,whichiscommonamongindustrialdatasetsExamplesofsoftsensorapplicationsbasedonPCA/PLShavebeendiscussedin[8–11]MultilayerPerceptron(MLP)[12]isanotherpredictivetechniquewidelyappliedasasoftsensor[13]ThepopularityoftheLayerPerceptrons(LPs)originatesintheirabilitytomodelnonlinearfunctionsFurthermore,onecanfindarangeofothertechniqueslikesup-portvectormachines(SVM)[14]andneuro-fuzzysystems[15]appliedforsoftsensors[16,17]
Whilethefieldofapplicationofsoftsensorsisbroad,themostcommonapplicationtypeiswhatisreferredtoasonlineprediction[2]Inthecaseofthisapplicationtype,thesoftsensoristrainedusinghistoricaldatabeforeitislaunchedinthereal-lifeenvironmentwhereitstaskistoprovideanonlinepredictiononthebasisoftheincominginputdatastreamAnotherfrequentapplicationtypeofsoftsensorsistheiruseforprocessmonitoringandprocessfaultdetectionThesystemscanbeeitherappliedtodescribe/analyzethenormaloperatingstateortorecognizepossibleprocessfaultsbeforethesestatesoccurCommonly,processmonitoringtechniquesarebasedonmultivariatestatisticaltechniqueslike
PCAormorepreciselyonHotelling’sT2[18]andQ-statistics[19]Comparedtotraditionalunivariate
controlcharts,thesemeasureshave,ontheonehand,theadvantageofconsideringallinputfeaturesand,ontheotherhand,providinginformationaboutthecontributionoftheparticularfeaturestoapossibleviolationofthemonitoringstatistics[20]Softsensorsprovidingacertaindegreeoftranspar-encymayalsobeveryusefulfortheinterpretationoftheunderlyingprocessParticularlyusefularesoftsensorsbasedonPCAandPLSasthesetwomethodsdeliverameasureofhowmuchagiveninputvariablecontributes(1)toexplainingtheinputdatavariance(incaseofPCA)or(2)theoutputvariableofinterest(incaseofthePLS)SoftsensorscanalsobedevelopedtoreplicatehardwaresensorsInsuchacase,thesoftsensorpredictionsareusedincaseoffailureorunavailabilityoftheoriginalhardwaresensor,whichmayoccurduetoitsmaintenance,replacement,etc[21]
Aparticulardrawbackofmanyofcurrentsoftsensorsistheirstaticnature[2]Traditionally,themodelsarenotadaptive,andoncedeployedintothereal-lifeoperation,themodeldoesnotchange(see,eg,[21,22])Incontrasttothis,theenvironment,inwhichthesoftsensorsareapplied,isoftenchang-ing[23]Thecombinationofthestaticmodelandthechangingdataleadstoperformancedeteriorationbecausethemodelusuallyrepresentstheout-of-datestateoftheprocessasitwasobservedduringthetrainingphaseInordertocopewiththisproblem,oneofthefollowingtwoconditionshastobeful-filled:(1)thehistoricaldatahavetocontainallofthestates,whichmayoccurinthefuture,inthiscasethesoftsensorcanbetrainedtocopewithanyofthestatestobeexpectedinthefuture;and(2)ifthe
Trang 31• Preprocessingandpredictivetechniques:ThestatisticalandmachinelearningtechniquesforthedatapreprocessingandfortheactualsoftsensorOnepreprocessingandtwosoftsensortech-niquesarepresentedinthesectionondata-driventechnique
• Historicaldata:ThehistoricaldataforthetrainingandparameterizationofthepreprocessingandthepredictivemethodsThecharacteristicsandroleofthehistoricaldataareinmoredetaildiscussedinthesectionondataforsoftsensordevelopment
• Expertknowledge:TheroleofexpertknowledgewasbrieflydiscussedintheintroductionofthisworkThegoldenruleforexpertknowledgeisthatithastobeusedforthesoftsensordevelop-mentwhenavailable
Allthesethreepartsareinputfortheactualsoftsensordevelopment,asshowninFigure11Amoredetailedmethodologyforsoftsensordevelopmentcanbefoundin[2]Theoutcomeofthisprocessisatrainedpredictivemodel—asoftsensor
1.1.1 Soft Sensor Operations
Oncedeveloped,thesoftsensorcanbedeployedintothereal-lifeoperationwhereitstaskistodeliverthepredictionscalculatedmeasurementoftheoutputvariablesasshowninFigure12
Inthenextsection,thecharacteristicsofthehistoricalandonlinedatarequiredforthesoftsensordevelopmentandoperationarediscussedindetail
1.2 Data for Soft Sensor Development
1.2.1 Historical Data
Usually,whendealingwithreal-lifeindustrialmodelingtasks,thereisasetofhistoricalrecordingsavailableThisformsthebasisforthedevelopmentofthesoftsensorThesedatahaveanumberofpropertiesrelevantforthesoftsensordevelopmentprocessThehistoricaldataconsistofanumber
Preprocessing and predictive techniques
Historical data
Expert knowledge
Soft sensors development process sensorSoft
FIGURE 1.1 Softsensordevelopmentprocess
FIGURE 1.2 Softsensoroperation
Trang 32getvariable,inmostcasesonlythelabeledsamples(ie,datapointscontainingthetargetvalues)arerecordedwithinthehistoricaldataTherefore,thesamplingrateoftheinputvariablesandthetargetvariablecanbeassumedasequal
Furthermore,althoughthesamplingrateoftheinputdataisusuallyhigherthantheoneofthetar-AnotherrelevantandpossiblyharmingpropertyofthedataisthedelaysbetweentheinputvariablesthemselvesWithoutpriorprocessknowledge,thesetypesofdelaysaredifficulttocompensateforandhavetobedealtwithbytheapplicationofanappropriatefeatureselectionalgorithm
1.2.2 Online or real-time Data
Oncethesoftsensorbuildingphaseisfinished,themodelisappliedintheonlineoperationandneedstodealwiththeonlinedatastreamIncomparisontohistoricaldata,theonlinedatahaveslightlydif-ferentcharacteristics
Dataarearrivinginanincrementalway,thatis,onesample(orasmallbatchofsamples)afteranotherIngeneral,thesamplingratebetweentheinputandthetargetdatacandiffer
Therealvaluesofthetargetmeasurement,whichusuallyarriveatalowersamplingratethantheinputsamplesandoftenwithcertaindelays,canbeusedtoevaluatethemodelperformanceduringtheonlinepredictionphaseIfthereisanotabledeteriorationofthemodelperformance,anadaptationofthemodelneedsbeperformedusingthetargetdataThecharacteristicsofhistoricaldataandreal-timedataaresummarizedinTable11
1.2.3 Process Data Issues
cussedfurtherinthissection
Figure13showsexamplesofvariablesaffectedbycommonissuesofindustrialdatathatwillbedis- 1Figure13showsexamplesofvariablesaffectedbycommonissuesofindustrialdatathatwillbedis-Figure13showsexamplesofvariablesaffectedbycommonissuesofindustrialdatathatwillbedis- Missing values:Figure13showsexamplesofvariablesaffectedbycommonissuesofindustrialdatathatwillbedis-MissingFigure13showsexamplesofvariablesaffectedbycommonissuesofindustrialdatathatwillbedis-dataFigure13showsexamplesofvariablesaffectedbycommonissuesofindustrialdatathatwillbedis-areFigure13showsexamplesofvariablesaffectedbycommonissuesofindustrialdatathatwillbedis-singleFigure13showsexamplesofvariablesaffectedbycommonissuesofindustrialdatathatwillbedis-samplesFigure13showsexamplesofvariablesaffectedbycommonissuesofindustrialdatathatwillbedis-orFigure13showsexamplesofvariablesaffectedbycommonissuesofindustrialdatathatwillbedis-consequentFigure13showsexamplesofvariablesaffectedbycommonissuesofindustrialdatathatwillbedis-setsFigure13showsexamplesofvariablesaffectedbycommonissuesofindustrialdatathatwillbedis-ofFigure13showsexamplesofvariablesaffectedbycommonissuesofindustrialdatathatwillbedis-them,Figure13showsexamplesofvariablesaffectedbycommonissuesofindustrialdatathatwillbedis-whereFigure13showsexamplesofvariablesaffectedbycommonissuesofindustrialdatathatwillbedis-oneFigure13showsexamplesofvariablesaffectedbycommonissuesofindustrialdatathatwillbedis-orFigure13showsexamplesofvariablesaffectedbycommonissuesofindustrialdatathatwillbedis-moreFigure13showsexamplesofvariablesaffectedbycommonissuesofindustrialdatathatwillbedis-
variables(ie,measurements)haveavaluethatdoesnotreflecttherealstateofthephysicalmea-suredquantityTheaffectedvariablesusuallyhavevalueslike±∞,0
ureofahardwaresensor,itsmaintenanceorremovalAsalreadymentioned,industrialplantsareheavilyinstrumentedforprocesscontrolpurposes;therefore,therecordedprocessdataalsoconsistofalargenumberofdiversevariablesInsuchascenario,thereisacertainprobability
MissingvaluesinindustrialcontexthavevariouscausesThemostcommononesarethefail-TABLE 1.1 CharacteristicsoftheHistoricalandOnlineData
HistoricalData Real-TimeData
parameteroptimization Softsensoroperationandadaptation(ifrequired)
Inputvariabledelays Possiblypresent Possiblypresent
Targetvariabledelays Compensated Possiblypresent
Inputvstargetsamplingrate Equal Possiblylower
Trang 33Sincemostofthetechniquesappliedtodata-drivensoftsensingcannotdealwithmissingdata,astrategyfortheirreplacementusuallyhastobeimplementedAnapproach,whichisveryprimitiveandnotrecommendedbutstillcommonlyappliedinpracticalscenarios,istoreplace the missing values with the mean values of the affected variable Another nonopti-mal approach is to skip the data samples consisting of variable or variables with the miss-ing values, that is, case deletion [25] A more efficient approach to missing values handlingtakesintoaccountthemultivariatestatisticsofthedataandthusmakesthereconstructionofthemissingvaluesdependentontheotheravailablevariablesoftheaffectedsamples(eg,maximum-likelihoodmultivariateapproachtomissingvaluesreplacement[26])ThesetypesofapproachesarerelatedtosensorfaultdetectionandreconstructionFromanotherpointofview,onecandistinguishtwodifferentapproachesfordealingwithmissingvalues[25]Theseare(1)singleimputationwherethemissingvaluesarereplacedinasinglestep(using,eg,mean/medianvalues)and(2)multipleimputation,whichareiterativetechniqueswhereseveralimputationstepsareperformed
In[27],analgorithmbasedoniterativelyreweighedleastsquaresisappliedtodealwithmissingandnoisydataThisalgorithmislimitedtotheestimationofdynamiclinearsystemparametersonlyTheauthorsshowthatthealgorithmcandealwithasituationwheretheprobabilityofmiss-ingdataislessthan50%,providedthatahighnumberofsamplesareavailable
dlingwaspresentedin[26,28]
Anothertechniquefordealingwithmultipleimputationtechniquesformissingvalueshan-(b) Var 1
Var 2 Var 3 (a)
(d) (c)
FIGURE 1.3 Commonissuesfoundinindustrialdatasets:(a)missingvalues;(b)outliers;(c)datacolinearity;
(d) measurementnoise
Trang 342 Data
outliers:Outliersaresensorvaluesthatdeviatefromthetypical,orsometimesalsomeaning-ousoutliersandnonobviousoutliers[29]ObviousoutliersarethosevaluesthatviolatethephysicalortechnologicallimitationsForexample,theabsolutepressuremaynotreachnegativevaluesortheflowsensormaynotdelivervaluesthatexceedthetechnologicallimitationsofthesensorTobeabletodetectthistypeofoutlierefficiently,thesystemhastobeprovidedwiththelimitingvaluesintheformofaprioriinformationIncontrasttothis,nonobviousoutliersareevenhardertoidentifybecausetheydonotviolateanylimitationsbutstilldonotreflectthecorrectvariablestatesOutlier detection as part of the data preprocessing remains very critical for soft sensor
ful,rangesofthemeasuredvaluesOnecandistinguishbetweentwotypesofoutliers,namely,obvi-development because undetected outliers have a negative effect on the performance of themodels For example, the influence of a single outlier can be critical for the PCA [30–32]Anotherproblemofoutlierdetectionisthatevenwhenapplyingautomaticoutlierhandlingpreprocessingsteps,usuallytheresultshavetobevalidatedmanuallybythemodeldeveloperThegoalofthemanualinspectionistodetectanypossibleoutliermasking(ie,false-negativedetections, undetected outliers) and outlier swamping (ie, false-positive detections, correctvalueslabeledasoutliers)[33]
TypicalapproachestooutlierdetectionarebasedonthestatisticsofthehistoricaldataThemostsimpleapproachisthe3_outlierdetectionalgorithm(see,eg,[9,34]),whichisbasedonunivariateobservationsofthevariabledistributionsThismethodlabelsalldatasamplesoutof
therange_(x)_3_(x),where_(x)isthemeanvalueand_(x)thestandarddeviationofthevariable
x,asoutliersAmorerobustversionofthisapproachistheHampelidentifier[35],whichusesa
moreoutlierresistantmedianandmedianabsolutedeviation(MAD)values[33,34]tocalculatethelimits
Theinfluenceofoutliersontheidentificationoflinearandnonlinearmodelsisdiscussedin[33]Forthehandledmodels,theHampelidentifierisfoundtobeaneffectiveapproachfordealingwithoutliersIn[36],amovingwindowfilteriscombinedwiththeHampelidentifiertoobtainanoutlierdetectionandremovalsystemIncontrasttotheunivariateapproaches,themultivariatemethodsusecombinationsofmorefeaturestodetecttheoutliersAnexamplefromthisgroupbasedonthePCAistheJolliffeparameter[37,38]Atwo-stageoutlierdetectionapproachisdis-cussedin[39]ThefirststageistheapplicationofthePCA,afterthistheHotelling’sT2measure[18]canbeusedtodetectoutliercandidatesthatarelocatedoutsideofthe99%confidenceellipseThesecandidatesarethenfurtheranalyzedinthesecondstep,whereScheffe’stest[40]isappliedtothesepoints
3 Drifting data:Therearetwotypesofdriftingdata,anddependentonthecauseofthedrifts,one
candistinguishbetweensystemandsensordriftsThecausesofthesystemdriftarethechangesof the underlying systemdueto abrasion of equipment, aging of instruments, environmentalconditions,etcTheseareparticularlyprevalentinindustrieswithalargenumberofmechanicalelementsthatundergosteadyabrasionduringtheiroperationAnothercauseofsystemdriftscanalsobeexternalinfluenceslikechangingenvironmentalconditions(eg,weatherinfluence),thepurityoftheinputmaterials,andcatalystdeactivationThesefactorshavenotonlyaninfluenceonthedatabutaffecttheprocessstateaswellTherefore,thedriftsshouldberecognizedandreported,andappropriateactionsshouldbetakentoremovetheirsourceThisisdifferentinthecaseofsensordrifts,whicharecausedbychangesinthemeasuringdevicesandnotbytheprocessitselfThecriticalpointisthatthistypeofdrifts,whilestillobservedinthemeasureddata,doesnotreflectanychangesinthesystemTherefore,inthecaseofsensordrifts,theactiontobetakenshouldbetherecalibrationofthemeasurementdevicesortheadaptationofthesoftsensorIntermsoftheeffectsofdriftsonthedata,onecanobservechangesinthemeansandvariancesofthesinglevariablesaswellaschangesofthecorrelationstructureofthedata[41]
DistinguishingbetweenthetwodifferentdriftcausesdiscussedischallengingandonceagainalotofexpertknowledgeisneededinordertotakeappropriateactionAnotherchallenging
Trang 35ThemostcommonapproachtodealwithdynamicsinthedataistoapplythemovingwindowtechniqueInthiscase,themodelisupdatedonaperiodicbasisusingonlyadefinednumberofthemostrecentsamplesSomeexamplesoftheapplicationofthistechniqueinthecontextofsoftsensormodelingwerepublishedinReferences[42–45]
4 Data colinearity:Anotherchallengingissueforsoftsensingisrelatedtothestructureofthedata
Typically,thedatameasuredinheavilyinstrumentedindustriesarestronglycolinearTheseresultsfromthepartialredundancyinthesensorarrangement,forexample,twoneighboringtemperaturesensors,willdeliverstronglycorrelatedmeasurementsSuchenvironmentsareoftencalleddatarichbutinformationpoor[46]However,forsoftsensingtherequirementsaredifferent,inthiscaseonlyinformativevariablesarerequiredAnythingelseisunnecessarilyincreasingtheinputdatadimen-sionality,whichoftenhasanegativeeffectonthemodeltrainingandperformance
tipleinputvariablesintoanewreducedspacewithlesscolinearityasitisdoneinthecaseofthePCAandPLSThesetwoapproachesarethemostpopularonestodealwithdatacolinearityintheprocessindustryExamplesofapplicationswherePCAisusedare[9,43,47,48]andforthePLS[49,50,22]AnotherwaytohandlecolinearityistoselectasubsetofinputvariablesthatarelesscolinearTheseapproachesaresummarizedundertheumbrellaofvariable(orfeature)selectionmethodsinthecomputationallearningresearchAgeneralreviewofthesemethodsispresentedin[51]Somefeatureselectionmethodsinthecontextofsoftsensingarealsodiscussedin[38]Amongthediscussedapproachesarecorrelation-andpartialcorrelation-basedfeatureselectionaswellasMallows’Cpstatistics
TherearetwowaystodealwiththecolinearityproblemOnewayisbytransformingthemul- 5TherearetwowaystodealwiththecolinearityproblemOnewayisbytransformingthemul-TherearetwowaystodealwiththecolinearityproblemOnewayisbytransformingthemul- Sampling rates and measurement delays:TherearetwowaystodealwiththecolinearityproblemOnewayisbytransformingthemul-VariousTherearetwowaystodealwiththecolinearityproblemOnewayisbytransformingthemul-sensorsTherearetwowaystodealwiththecolinearityproblemOnewayisbytransformingthemul-usuallyTherearetwowaystodealwiththecolinearityproblemOnewayisbytransformingthemul-workTherearetwowaystodealwiththecolinearityproblemOnewayisbytransformingthemul-atTherearetwowaystodealwiththecolinearityproblemOnewayisbytransformingthemul-differentTherearetwowaystodealwiththecolinearityproblemOnewayisbytransformingthemul-samplingTherearetwowaystodealwiththecolinearityproblemOnewayisbytransformingthemul-ratesTherearetwowaystodealwiththecolinearityproblemOnewayisbytransformingthemul-
andthusonehastotakecaretosynchronizethemThesynchronizationofthedataisusuallyhandledbytherecordingdatabasesThedefinitionofsuchathresholdisanothercriticalpoint,whichinfluencesthequalityofthehistoricaldataSoftsensorsareoftenappliedinmultiratesystemswithseveraloperatingsamplingratesSuchascenariooccursinasystemwheresomeofthevariables,usuallycriticalfortheprocesscontrol,areevaluatedinlaboratoriesatamuchlowersamplingratethantherestoftheautomaticallymeasureddata
Additionalissuesofthedataaretheprocess-relateddelaysinthemeasurementsForinstance,materialsintheprocessesusuallyhaveagivenrun-timethroughtheprocess(eg,thedwellperiodwithinareactorordistillationcolumn),andthus,itisnotreasonabletorelatetwodif-ferentmeasurementstakenatthesametimeatdifferentlocationswithintheprocessInsteadofthis,thedelaysintheparticularmeasurementsshouldbecompensatedbysynchronizingthevariablesHowever,inordertoperformthesynchronization,anextensiveknowledgeaboutthesystemisrequired
6 Measurement noise:Measurementnoiseisanothercommoneffectobservedinindustrialdata
Mostoftheapproachestosoftsensordevelopmentaretryingtocopewithmeasurementnoiseduring the preprocessing stage of the data processing This is achieved mainly by applying asmoothing(averaging)filterasapreprocessingstep
basedmethod,itcandealwithmeasurementnoiseaslongasitcanbeassumedasGaussiannoise,thatis,randomlydistributedwithzeromeanvalue[9]Inthesameworktheauthorsalsohigh-lighttheapplicationofrobuststatistics,thatis,usingthemedianinsteadofthemeanoperatorandMADinsteadofthestandarddeviation,forthenormalizationofnoisydata
ThePCAisalsoausefultoolfordealingwithmeasurementnoiseAsaleastmeansquares-ZamprognaetalhaveshowntherobustnessofthePLSmethodtowardmeasurementnoisein[22]TheauthorshaveshownthatthereareonlysmallchangesofthepredictionerrorofaPLSsoftsensorwithincreasingnoiselevelsTheexplanationofthisfactisthatthenoiseinfluencesmainlythehigher-orderlatentvariablesthatarenormallyskippedinpracticalapplication
Trang 361.3 Data-Driven techniques for Soft Sensor Development
ThissectiondescribesthethreemostcommonmethodsforthedevelopmentofsoftsensorsThePCAcanbeeitherusedasadatapreprocessingmethodorincombinationwitharegressionmethodasafullsoftsensor,insuchcasethemethodisreferredtoasPCRPLSisanotherpopularmethodforsoftsensing[2]ThismethodisinparticularveryusefulforadaptivesoftsensorsThethirdpresentedmethodistheartificialneuralnetwork(ANN)andinparticularitspopularformoftenusedfornon-linearmodelingcalledMLP
1.3.1 Principal Component regression
with 1 and
1 1 1 1 1
n
[ , , , ] ,( ,
whereP∈R ,E n m× ∈R aretheloadingsandresidualsmatrices,respectivelyn m×
ThereareseveralwaystocalculatethematrixPInthecaseofthecovarianceapproach,thecorrelation matrixCoftheinputdataXhastobecalculated:
Trang 37Inthissection,themostcommonsoftsensingtechniqueanditsadaptive(recursive)versionareout-andmean-centeredinputdataXandoutputdataY∈R (wherepisthenumberofoutputvariable n p×streamsthataresupposedtobepredicted)toseparatelatentvariables:
Thelatentvectors,whichareorthonormaltoeachother i.e.,t t( i T j = ∀0 i j≠ )
,areamorecompactdescrip-tionoftheinputdataThecolumnvectorsp∈Rm l×andq∈R oftheloadingmatricesPandQrepre- p l×
Trang 38forthecalculationofPLSistheNIPALSalgorithm[52]TheNIPALSalgorithmcalculatesonelatentvectoraftertheotherinaniterativewayTheexplainedcovarianceisremovedfromthedataaftertheeachiteration:
X i+ 1=X i−t p i i T (114)
Y i+ 1= −Y i u q i i T (115)
whichisfollowedbythecalculationofthenext,thatis,(i +1)thvectorsforthePLSouterandinner modelsusingthenewdatamatricesX i+1 andY i+1Thenumberofcalculatedlatentdimensionsisusuallyestablishedusingcross-validationorsomeotherparameteroptimizationtechniques
Inthenonadaptivemodelingscenario,thematricesP, T, Q,
U,andBarecalculatedduringthetrain-ingphasebasedonthebatchofhistoricaldataHowever,asdiscussedintheintroductionaswellas
in [44],thisapproachisoftenproblematicbecausetheprocessanditsdataarechangingoverthetimeAnadvantageofthePLSalgorithmisthatithastheabilitytoincrementallyintegratenewdataTherecursivepartialleastsquares(RPLS)hasbeenintroducedin[54]andfurtherclarifiedin[44]Itcanbeusedtoadaptthemodelinseveralways:(1)onsample-by-samplebasis,(2)byintegratinganewbatchofdata,or(3)bymergingtwoPLSmodels
new
T
i new
TheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi- 1TheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-TheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi- MLP:TheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-AnTheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-MLPTheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-isTheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-aTheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-feed-forwardTheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-ANNTheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-asTheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-shownTheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-inTheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-FigureTheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-1TheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-4TheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-TheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-ItTheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-consistsTheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-ofTheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-oneTheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-inputTheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-layer,TheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-oneTheoriginalideaofANN[12]wastobuildcomputationalmodelsmotivatedbytheoperationofbiologi-
outputlayer,andatleastonehiddenlayerTheroleoftheinputlayeristocollecttheinputdataandprovideittothehiddenlayerforfurtherprocessingThenumberofunitsintheinputlayerisequivalenttothedimensionalityoftheinputdataEachoftheinputunitsisconnectedtoeach
Trang 39Wherex jinisthejthvariableoftheinputsample,w j i,hiddenistheweightbetweenthejthinputunitand
Input layer Hiddenlayer Outputlayer
Trang 401.4 applications of Soft Sensors
TheapplicationsofsoftsensorscanbefoundacrossmanyfieldsofanyindustryThemostcommonapplicationtypesarepresentedinthefollowingsectionsofthiswork;pleasenotethatthisisonlyshortextractofthelargenumberofapplicationsofsoftsensorsAcomprehensivelistofcasestudiescanbefoundin[2,24,57]
1.4.1 Online Prediction
ThemostcommonapplicationofsoftsensorsisthepredictionofvaluesthatcannotbemeasuredonlineusingautomatedmeasurementsThismaybefortechnologicalreasons(eg,thereisnoequipmentavailablefortherequiredmeasurement),economicalreasons(eg,thenecessaryequipmentistooexpensive),etcThisoftenappliestocriticalvaluesthatarerelatedtothefinalproductqualitySoftsensorscaninsuchscenariosprovideusefulinformationaboutthevaluesofinterestandinthecasewhenthesoftsensorpredictionfulfillsgivenstandards,itcanalsobeincorporatedintotheautomatedcontrolloopsoftheprocess[58]Data-drivensoftsensorshavebeenwidelyusedinfermentation,polymerization,andrefineryprocesses
1.4.2 Process Monitoring and Process Fault Detection
pervisedlearningorbinaryclassificationtaskThesystemscanbeeithertrainedtodescribe/analyzethenormaloperatingstateortorecognizepossibleprocessfaults[59–61]Commonly,processmonitoringtechniquesarebasedonmultivariatestatisticaltechniqueslikePCA,ormorepreciselyonHotelling’sT2
AnotherapplicationareaofsoftsensorsisprocessmonitoringProcessmonitoringcanbeeitheranunsu-[18]andQ-statistics[19]Thesemeasureshave,ontheonehand,theadvantageofconsideringallinput
features,thatis,usingmultivariatestatisticsand,ontheotherhand,providinginformationaboutthecontributionoftheparticularfeaturestoapossibleviolationofthemonitoringstatistics[20]
1.4.3 Hardware Sensor Backup
SoftsensorscanalsoactasbackupsensorsforhardwaresensorswithatendencytofailureorwitharequirementforperiodicmaintenanceInsuchasituationinordertopreventadisturbanceofthewholesystem,softsensorscanbedevelopedtoreplacethehardwaresensorsduringtheirunavailability[21]
1.5 Conclusions
Undoubtedly,softsensorswillgainimportanceinthenearfutureForthisreason,thisworkfocusedonthedescriptionofsoftware-basedsensorsasavaluablealternativetohardwaresensorsThegreatestpotentialofsoftsensorsliesinsituationswheretheapplicationhardwaresensorreachesitspractical,physical,oreconomicallimitsInsuchsituations,softsensorscanoftendeliverbettermeasurementsAprerequisitefortheabilitytodeliverusefulmeasurementsishowevertheavailabilityofhigh-qualityandrelevantdataforthetrainingofthesoftsensor,whichinpracticalapplicationsoftencomesatthepriceofintensivemanualdatapreprocessingonlyThisworkdescribedtheprocessofsoftsensordevel-opmentandoperationanddiscussedthemainaspectsthathavetobeconsideredduringthedevelop-mentandapplicationofasoftsensorThemostcommontechniquesappliedforsoftsensorswerealsooutlinedindetailinthiswork
acknowledgment
Parts of the study presented in this chapter were carried out during the author’s affiliation withBournemouthUniversity,UnitedKingdom