1. Trang chủ
  2. » Khoa Học Tự Nhiên

Unique role of ionic liquid bminBF4 during curcumin–surfactant association and micellization of cationic, anionic and non ionic surfactant solutions

6 506 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 591,18 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Unique role of ionic liquid bminBF4 during curcumin–surfactant association and micellization of cationic, anionic and nonionic surfactant solutions.pdfUnique role of ionic liquid bminBF4 during curcumin–surfactant association and micellization of cationic, anionic and nonionic surfactant solutions.pdfUnique role of ionic liquid bminBF4 during curcumin–surfactant association and micellization of cationic, anionic and nonionic surfactant solutions.pdfUnique role of ionic liquid bminBF4 during curcumin–surfactant association and micellization of cationic, anionic and nonionic surfactant solutions.pdfUnique role of ionic liquid bminBF4 during curcumin–surfactant association and micellization of cationic, anionic and nonionic surfactant solutions.pdfUnique role of ionic liquid bminBF4 during curcumin–surfactant association and micellization of cationic, anionic and nonionic surfactant solutions.pdfUnique role of ionic liquid bminBF4 during curcumin–surfactant association and micellization of cationic, anionic and nonionic surfactant solutions.pdfUnique role of ionic liquid bminBF4 during curcumin–surfactant association and micellization of cationic, anionic and nonionic surfactant solutions.pdfUnique role of ionic liquid bminBF4 during curcumin–surfactant association and micellization of cationic, anionic and nonionic surfactant solutions.pdfUnique role of ionic liquid bminBF4 during curcumin–surfactant association and micellization of cationic, anionic and nonionic surfactant solutions.pdf

Trang 1

jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / s a a

Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, P.O Box: 11-0236, Riad El Solh, Beirut, 1107-2020, Lebanon

a r t i c l e i n f o

Article history:

Received 30 September 2010

Received in revised form 17 May 2011

Accepted 24 May 2011

Keywords:

Curcumin

Hydrophilic ionic liquid

Micelle

Surfactant

Spectroscopy

a b s t r a c t Hydrophilicionicliquid,1-butyl-3-methylimidazoliumtetrafluoroburate,modified thepropertiesof aqueoussurfactantsolutionsassociatedwithcurcumin.Becauseofpotentialpharmaceuticalapplications

asanantioxidant,anti-inflammatoryandanti-carcinogenicagent,curcuminhasreceivedampleattention

aspotentialdrug.Theinteractionofcurcuminwithvariouschargedaqueoussurfactantsolutionsshowed

itexistsindeprotonatedenolforminsurfactantsolutions.Thenitroandhydroxylgroupsofo-nitrophenol interactwiththecarbonylandhydroxylgroupsoftheenolformofcurcuminbyforminggroundstate complexthroughhydrogenbondsandofferedinterestinginformationaboutthenatureofthe interac-tionsbetweentheaqueoussurfactantsolutionsandcurcumindependingonchargeofheadgroupofthe surfactant.IL[bmin][BF4]encouragedearlyformationofmicelleincaseofcationicandanionicaqueous surfactantsolutions,butslightlyprolongedmicelleformationinthecaseofneutralaqueoussurfactant solution.However,forcurcuminIL[bmin][BF4]favoredstrongassociation(7-foldincrease)withneutral surfactantsolution,marginallysupportedassociationwithanionicsurfactantsolutionanddiscouraged (∼2-folddecrease)associationwithcationicsurfactantsolution

© 2011 Elsevier B.V All rights reserved

1 Introduction

Micellarsystemsofaqueousoriginhaveimmensetechnological

applicationsas flow field regulators, solubilizing and

emulsify-ingagents,membranemimeticmedia,nanoreactorsforenzymatic

reaction and drug deliverysystem [1–8] It is anticipated that

curcumin,

1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, may find applications as a novel drug in the near

future to control various diseases, including inflammatory

dis-orders,carcinogenesisandoxidativestress-inducedpathogenesis

[9–12].Curcuminhasdrawnintenseinterestrecentlydue toits

potentialpharmaceuticalimportance[13–24].However,curcumin

isverypoorlysolubleinwaterbyreducingitseffectivenessasa

drug.Therefore,variousmethodsarebeingdevelopedtomake

cur-cuminbettersolubleandenhanceeffectivenessofthedrugduring

itsdelivery[16]

Physiochemicalproperties of an aqueoussurfactantsolution

dependontheidentityofthesurfactant.Theaqueoussolutionof

a surfactantat a givenconcentrationposses moreor less fixed

physiochemicalproperties that are difficultto modulate.Other

thanchangingtemperatureandpressure,theusualwayto

mod-ifythephysiochemicalproperties ofa givensurfactantsolution

is to use external additives, such as cosolvents, cosurfactants,

∗ Corresponding author Tel.: +961 1350 000x3985; fax: +961 1365217.

E-mail address: dp03@aub.edu.lb (D Patra).

electrolytes,non-polarorganics,polarorganics,etc.Ionicliquids (ILs) are solvents composed entirely of ions and composed of poorly coordinating ionsand can therefore behighly polaryet non-coordinating[25–27] Theseareimmiscible witha number

of organicsolvents and providenon-aqueous polaralternatives fortwophasesystems.Theyareofparticularinterestbecauseof theirenvironmentallyfriendlynature,theirexcitingfeaturesand theireconomicalconvenience[28–35].Theunusualpropertiesof ILsdemonstrateauniqueroleinalteringthepropertiesofaqueous surfactantsolutionssuchasaggregationnumber[3,4].The effec-tivenessofthismodificationofaqueoussurfactantsolutionsbyIL maylargelydependonthekindandextentofinteraction/sbetween cation/anionoftheILandtheheadgroupofthesurfactant[4] How-ever,hydrophobiceffectofILwithsurfactantmoleculemightplay

arole.InadditionwehypothesizethatILmaydrivethe associa-tionofthedrugmoleculetowardsbettersolubilizationinmicellar system(whichisveryimportantduringdrugdelivery)asperthe headgroupofthesurfactantchargeandphysiochemicalproperties

ofthedrugmolecule

Inordertounderstandthebetterinsightoftherole ofthese interactions of IL during solubilization of poorly water soluble drugsuchascurcumininmicellarsystemsandmicellization,we extendthestudyofinteractionofILandsurfactantsolutions[4] furthertosystemscomposedof various(positiveand negative) charged and uncharged surfactant solutions, curcumin and an

IL(1-butyl-3-methylimidazoliumtetrafluoroburate,[bmin][BF4]) The association of curcumin with various charged surfactant

1386-1425/$ – see front matter © 2011 Elsevier B.V All rights reserved.

Trang 2

solutions and fluorescence quenching of curcumin by

o-nitrophenolindifferentsurfactantsolutionsmayexplorethekind

ofinteractionbetweencurcuminandvariouscharged/uncharged

surfactantsolutionswithoutIL.Duetocation/anionoftheIL,itmay

remarkablyaltertheinteractionofcurcuminandsurfactant

solu-tionsbasedonthechargeoftheheadgroupofthesurfactantand

deprotonatedformofcurcumin,thereforeimpactdrug–surfactant

association.Comparativestudyofvariouscharged/uncharged

sur-factantmoleculesmayconcludeimportanceofhydrophobiceffect

ofILduringmicellization

2 Materials and methods

2.1 Materials

Thesurfactants cetyltrimethyl ammoniumbromide (CTAB),

sodium dodecyl sulfate (SDS) and Triton X-100 (TX100) were

obtained from Acros Organics and were dissolved in different

volumesofdoubledistilledwaterforthepreparationofseveral

con-centrationsofsurfactantsolutions.Thestocksolutionsconsistedof

10mMCTAB,100mMSDSand10mMTX100.Curcuminwasalso

obtainedfromAcrosOrganicsandwasusedwithoutfurther

purifi-cation.Topreparethestocksolution,curcuminwasdissolvedin

spectroscopicgradeacetonitrile(AcrosOrganics)sothatthefinal

concentrationofacetonitrileinthesurfactantsolutionsremained

lessthan1%(v/v).1-Butyl-3-methylimidazoliumtetrafluoroburate,

[bmin][BF4]was obtainedfrom Flukaand o-nitrophenolwas a

MerckSchuchardtproduct.Thesolventswereusedwithoutfurther

purification

2.2 Spectroscopicmeasurements

TheabsorptionspectrainvarioussolventsandincationicCTAB,

anionicSDS,andneutralTX100wererecordedatroomtemperature

using a JASCO V-570 UV–VIS–NIR Spectrophotometer

Fluores-cencemeasurementsweredoneonaJOBINYVONHoribaFluorolog

3spectrofluorometer.Theexcitationsourcewasa100WXenon

lamp.ThedetectorusedwasR-928operatingatavoltageof950V

Theexcitationand emissionslitswidthwere5nm.Thespectral

datawerecollectedusingFluorescencesoftwareanddataanalysis

wasmadeusingOrginPro6.0software

3 Results and discussion

3.1 Curcumin–surfactantinteractioninabsenceofIL

Generally,curcuminshowedastrongandintenseabsorption

bandin the 350–480nm wavelength region in all the

investi-gatedsurfactantsolutions Representativeabsorptionspectraof

curcumininvariousconcentrationsofTX100solutionsaredepicted

inFig.1

The interaction between curcumin and micelles can be

describedas:

C+SCSKb

whereC iscurcumin;Sis thesurfactant(CTAB,SDSorTX100);

CSisthecurcumin–surfactantcomplex;andKbistheassociation

constant

Theconcentrationofthemicellizedsurfactantisgivenby:

Sm=Ss−cmc

whereS isthesurfactantconcentration

700 600

500 400

300 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.0

7-9 6 5

4 3 2 1

Wavelength (nm )

Fig 1.Absorption spectra of curcumin in various aqueous TX100 concentrations.

Table 1

Association rate constants of curcumin with various aqueous surfactant solutions

in the absence and presence of ionic liquid.

Sample cmc used for calculation (mM) K b

TX100 0.2 11,555 M −1

SDS + IL (1%, v/v) 0.95 6315 M −1

CTAB + IL (1%, v/v) 0.1 10,227 M −1

TX100 + IL (1%, v/v) 0.4 82,737 M−1

CTSml

A =

Sm

εs−ε0+K 1

gb(εs−ε0) wherelistheopticalpathlength,εmisthemolarexcitation coeffi-cientofcurcuminfullyboundtomicelles,ε0isthemolarexcitation coefficientofcurcumininthesolvent,CTisthetotalcurcumin con-centrationandA=A− A0whereAistheabsorbanceofcurcumin

inthepresenceofsurfactantsolutionandA0istheabsorbanceof curcuminintheabsenceofmicelle/surfactant

UsingScott’splots[6,36–39],theassociationconstantsofCTAB, SDSandTX100weredeterminedtobe20,467M−1,6193M−1and 11,555M−1(Table1 respectively.Itshouldbenotedthatthecrtical micellarconcentration(cmc)forthecalculationofassociation con-stantsforvariousmicellewasestimatedbyfluorescencemethod

asexplainedlateron.Itisobservedthat,KbCTAB>KbTX100>KbSDS These resultsimplied that thedifferent micelleshave different affinitiesforcurcumin.CationicCTABisboundtocurcuminwith thehighestaffinity,followedbyneutralTX100andthenanionic SDS.Thiscouldbeduetotheelectrostaticinteractionsbetween cur-cuminandthepositivechargeontheheadgroupofCTABpresentin theSternlayerofthemicelle,thusindicatingthatcurcuminatthe givenconditionsismainlyfoundinitsdeprotonatedanionicforms [40](seeSupplement1).InthecaseofSDS,therepulsionbetween deprotonatedenol(anionic)formsofcurcuminandthenegative chargeontheheadgroupofSDSpresentintheSternlayerofthe micellemakeaweakerinteraction,hencedecreasingthe associa-tionrateconstant.However,giventhattheheadgroupofTX100is nonionic,thevalueoftheassociationrateconstantforTX100was

inbetweenthatofCTABandSDS

3.2 Criticalmicellarconcentrationdetermination Fluorescenceexcitationandemissionspectraofcurcuminwith variousconcentrationsofsurfactantnotedthatthefluorescence

Trang 3

300 350 400 450 500 550 600 650 700

0.0

4.0x106

8.0x106

1.2x107

1.6x107

2.0x107

10 8-9

Curcumin with [TX100] (1) No TX10 0

(5) 0.1 mM (6) 0.2 mM (7) 0.6 mM (8) 0.8 mM (9) 1.0 mM

0.0 4.0x106 8.0x106 1.2x107 1.6x107 2.0x107 2.4x107

2.8x107

11-12

11-12 10 8-9

6

6 1-5

1-5

Fig 2. Fluorescence excitation and emission spectra of curcumin in various aqueous

TX100 concentrations.

intensityoftheemission and excitationspectraof curcuminin

TX100(shownin Fig.2)and SDS(not shown)increasedasthe

concentrationofthesurfactantwasincreased.However,the

flu-orescence spectra of CTAB exhibited a different behavior (not

shown)

Thefluorescenceintensityinitiallydecreased untilitreached

0.5mMofCTABandoncethecmcwasreached,theintensitystarted

increasingwithconcentration.Aredshiftwasalsoobservedafter

thecmcforCTAB.TheStokes’shiftofcurcumininvarious

concen-trationsofCTAB,SDSandTX100wasdeterminedasthedifference

betweenabsorptionandemissionmaximaobtainedfromthe

cor-rectedspectraonthewavenumberscale[41,42].TheplotofStokes’

shiftversussurfactantconcentrationofferedthreedifferentkinds

ofchange,respectively,forcationic(CTAB),anionic(SDS)and

neu-tral(TX100)surfactantsolutions.InthecaseofCTAB,thevalueof

Stokes’shiftrarelychangedbeforethecmc.Abigjumpof5000cm−1

wasobservedaroundthecmcandafterthecmcitremainedmore

orlessunaltered.ThecmcofCTABwasestimatedbyfindingthe

midpointofthetangentjoiningthetwolines,asshowninFig.3A

ForSDS,Stokes’shiftofcurcuminfordifferentsurfactant

con-centrationsvarieddifferently,itinitiallydecreasedtillthecmcwas

reached.Abovethecmc,itmarginallyincreased.Byextrapolating

thesetwolinearequations,beforeandafterthecmc,with

respec-tivenegativeandpositiveslopes,aminimumintersectingpointwas

obtainedtocalculatethecmc(Fig.3B).Stokes’shiftofcurucmin

increasedwithTX100concentrationuntilcmcwasattainedand

thenitdecreaseddramatically.Inthiscasethemaximumvalueof

Stokes’sshiftwasusedtoestimatecmcasmarkedinFig.3C.Thecmc

valuesestimatedusingStokes’shiftofcurcuminissummarizedin

Table2,thevaluesobtainedwithoutILaresimilartothereported

values[4,5,43]establishingthereliabilityofthemethod.The

differ-Table 2

cmc values of aqueous CTAB, SDS and TX100 solutions in the presence and absence

of ionic liquid.

Sample cmc

Curcumin

 (cm −1 )

Pyrene I I /I IIIa Reported b

SDS 7.3 mM 7.0 mM 6.0–8.0 mM

TX100 0.2 mM 0.25–0.5 mM 0.9 mM

SDS + IL (1%, v/v) 0.95 mM 1 mM (2%, v/v) –

CTAB + IL (1%, v/v) 0.1 mM – –

TX100 + IL (1%, v/v) 0.4 mM 0.5–1.0 mM (2%, v/v) –

a From Refs [3,4]

b From Ref [43]

5000 6000 7000 8000 9000

A

-1 )

[CTAB]

CTAB

0.0000 0.0005 0.0010 0.0015 0.0020

35000 40000 45000 50000 55000 60000 65000 70000

cmc of CTAB + IL cmc of CT AB

4000 4200 4400 4600 4800 5000 5200

cmc of SDS + IL

-1 )

[SDS]

SDS

0.00 0 0.005 0.010 0.015 0.020

18000 18200 18400 18600 18800 19000 19200 19400 19600 19800

cmc of S DS

SDS + IL

0.0000 0.0003 0.0006 0.0009 0.0012 0.0015 0.0018

3000 3500 4000 4500 5000 5500

6000

C

-1 )

TX100

0.00 00 0.000 3 0.00 06 0.000 9 0.0012 0.001 5 0.0018

0 1000 2000 3000 4000 5000

cmc of Tx10 0 + I L

cmc of TX100

TX100 + IL

Fig 3. Variation of Stokes’ shift of curcumin in different concentrations of aqueous CTAB (A), SDS (B) and TX100 (C) in the absence and presence of IL.

enttrendsofStokes’sshiftforvarioussurfactantscouldbedueto thevariouskindsofinteractionsbetweenthecharged/uncharged headgroupsofthesurfactantsandthedeprotonatedformsof cur-cumin

3.3 Quenchingstudybyo-nitrophenol o-Nitrophenol can strongly quench the fluorescence of cur-cumin by forming a ground state complex through hydrogen bonding[24]asgiveninScheme1

However,theextenttowhichitquenchesmayhighlydependon theconditionsofthemediuminwhichcurcuminando-nitrophenol

Trang 4

OH

Formation cyclic ground state complex of curcumin with o-nitrophenol

Scheme 1. Ground state complex formation of curcumin with o-nitrophenol causing fluorescence quenching of curcumin by o-nitrophenol.

can interact and hence, on the nature of the surfactants The

positionofthefunctionalgroupsino-nitrophenolandthe

geom-etryofthemoleculepredictthelocationofo-nitrophenolinthe

micelle[44].Thebenzeneringofthephenolispushedtowardsthe

hydrocarboncoreandthepolarfunctionalgroupsremaininthe

hydrophiliclayerofthemicelle[44].Giventhatthestoichiometric

ratioofo-nitrophenoltocurcuminis1:1,thenitroandhydroxyl

groupsofthequencherinteractwiththecarbonylandhydroxyl

groupsoftheenolformofcurcuminbymeansofstronghydrogen

bonds[24].Thisassociatedcomplex,whichisformedintheground

state,greatlyquenchesthefluorescenceofcurcuminthroughthe

followingprocess:

h νa

h νa

hνfl

h νfl

Using the Stern Volmer equation [45] the quenching rate

constantKsv ofcurcuminand thequencher,o-nitrophenol, was

determinedas

I0

f

If =1+Ks[oNP]

I0

f

If =1+kq0[oNP]

whereKsvistheSternVolmerrateconstant,I0

f isthefluorescence intensitywithoutthequencher,Ifisthefluorescenceintensitywith

thequencher,kqisthequencherratecoefficient,0isthe

fluores-cencelifetimeofcurcuminwithoutthepresenceofthequencher

and[oNP]istheconcentrationofo-nitrophenol.Fig.4illustrates

thefluorescencespectraofcurcumininthepresenceofSDS

with-outandwithvariousconcentrationsofo-nitrophenol.Theinsertin

Fig.4presentstheSternVolmerplot[45]forcurcumininpresence

ofvariousconcentrationofo-nitrophenol

Thefluorescencespectraofcurcumininwater,CTABandTX100

withoutandwithvariousconcentrationsofo-nitrophenolalong

withtheirrespectiveSternVolmerplotsshowedsimilartrends(not

shown).TheestimatedvaluesofKsvandkqforfluorescence

quench-ingofcurcuminbyo-nitrophenolinwater andvariousmicellar

mediaisdeterminedaspertheSternVolmerequation[45]and giveninTable3.Thequenchingrateconstantofcurcuminby o-nitrophenolinwaterwasdeterminedtobe449M−1incomparison

to3973M−1incationicCTAB.ThehighquenchingrateofCTABis duetothestabilizingelectrostaticinteractionsbetweenthe pos-itively chargedhead groups of themicelles and the negatively chargedenoliccurcumin(seeSupplement1).Thisattractive inter-actionfacilitatesthepenetrationofcurcuminintheSternlayerof themicelleandhencetheformationofthecomplex[CUR–NP].In thecaseofanionicSDS,adecreaseinthequenchingrateconstant wasfoundrelativetothatofwater.Thischangecanbelinkedto

Fig 4.Fluorescence emission spectra of curcumin in SDS in the presence of various concentration of o-nitrophenol The fluorescence intensity decreases with increase

in o-nitrophenol concentration Insert shows Stern Volmer plot for the determina-tion of the quenching rate constant K

Trang 5

Table 3

Quenching rate constants of curcumin by o-nitrophenol in water, CTAB, SDS and

TX100 surfactant solutions.

Sample K sv (M−1) k q (( 0av = 2.366 ns)

Water 449 1.9 × 10 11 M −1 s −1

CTAB 3973 1.7 × 10 12 M −1 s −1

SDS 367 1.6 × 10 11 M −1 s −1

TX100 550 2.3 × 10 11 M −1 s −1

association

Fig.5)andfluorescenceexcitationandemission(seeFig.5)

spec-traofcurcumininvarioussurfactantconcentrationsinpresence

ofILshowedtheabsorbanceorfluorescenceintensityofcurcumin

700 600

500 400

300

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7-8 6

5

4 3 2

Wavelength (nm)

(1 ) NO TX100 (2 ) 0.02 mM (3 ) 0.06 mM (4 ) 0.2 mM (5 ) 0.4 mM (6 ) 0.6 mM (7 ) 0.8 mM (8 ) 1.0 mM

Curcumin plus IL with [TX100]

1

700 650 600 550 500 450 400 350

300

0.0

8

8 7

6 4-5

Wave leng th (nm )

0

Curcumin plus IL with TX100

9

9

4-5

1-3

1-3

(1) No TX100 (2) 0.02 mM (3) 0.04 mM (4) 0.06 mM (5) 0.1 mM (6) 0.2 mM (7) 0.4 mM (8) 0.8 mM (9) 1.0 mM

Fig 5. Absorption and fluorescence (excitation and emission) spectra of curcumin

in various aqueous TX100 concentrations in the presence of IL.

inCTAB,SDSandTX100,increasedwithsurfactantconcentration Theassociationconstantsforthethreesurfactantswithcurcumin

in thepresenceofIL weredeterminedasexplained earlierand giveninTable1.TheassociationconstantofCTABinthepresence

ofILdecreasedsignificantlyrelativetoCTABwithoutIL.Thoughthe shorthydrophobiceffectofthetailmayencouragetheILtolocate aroundtheSternlayerofthemicelle,thepositivechargedhead groupwouldrepulsewiththesimilarchargedheadgroupsofCTAB FinallybothCTABandILwillcompetetobindwithdeprotonated formofcurcumin

Thiscompetitioncouldaccountforthedecreaseinthe associa-tionconstantofcurcuminwithCTAB.However,inthecaseofSDSin thepresenceofIL,anincreaseoftheassociationrateconstantwas observedcomparedtoSDSwithoutIL.IntheabsenceofIL,there

isrepulsionbetweenthenegativechargeoftheheadgroup (sul-fateion)ofSDSandthenegativechargeofthedeprotonatedform

ofcurcumin.WhenILisadded,itspositivechargeheadgroupwill actasastabilizerbetweennegativelychargedSDSandnegatively chargedcurcumin(deprotonatedform),thusfacilitatingthe asso-ciationofcurcuminwithSDS.Ontheotherhand,theassociation rateconstantofcurcuminwithTX100increasedsignificantlyinthe presenceofIL.Apossibleexplanationwouldbetheinductionof hydrogenbondinganddipole–dipoleforcesbythepositivecharge

oftheheadgroupoftheILwithTX100[4],assistinginteractionor strongassociationofcurcuminwithneutralsurfactantsolution 3.5 Effectofionicliquid[bmin][BF4]onmicellization

Asdiscussedearlier,thecmcofvariousaqueoussurfactant solu-tionswasevaluatedbasedonthechangeinStokes’shift(seeFig.3)

ofcurcumininthepresenceof1%(v/v)IL.VariationofStokes’shift withsurfactantconcentrationforCTABwithandwithoutILshowed similartrends.Itcouldthereforebeimpliedthatthereisnonew kindoffavorableinteractionbetweentheILandCTAB.However, similarplotsforSDSwithandwithoutILgavetwodifferenttrends indicatingthattheinteractionofcurcuminwithSDSinthe pres-enceandabsenceofILarenotsimilar.Asshownearlier,in the absenceofIL,theStokes’shiftofcurcuminincreasedwithincrease

inSDSconcentrationsuntilcmcwasreached.However,whenIL waspresent,Stokes’shiftcontinuedtodecrease,butata much smallerrate,withincreasingSDSconcentration.Thistrendcould implythatinthecaseofSDS,therecouldbeafavorable interac-tionthatstabilizesthemicellesinthepresenceofIL.ForTX100, variationofStokes’shiftwithsurfactantconcentrationshowed dif-ferenttrendsinthepresenceandabsenceofIL.WithoutIL,there wasabigincreaseinStokes’shiftofcurcuminafterthecmcwas reachedwhereasinthepresenceofIL,therewasanotabledecrease

ofStokes’shiftafterthecmc.Thisimpliesthattheinteractionsof TX100solutionsinthepresenceandabsenceofILareofdifferent nature.ItwasfoundthatcmcofCTABdecreasedwhen 1%(v/v)

ILwasadded(Table2).Thisdecreaseindicatesthatinthe pres-enceofthehydrophilicIL,theformationofmicellesisfavoredat relativelylowerconcentrations.Apossiblereasonforthis observa-tionwouldbethefavorablehydrophobicinteractionofthecarbon chainsofboth CTABand[bmin][BF4]as wellasthecumulative electrostaticinteractionamongCTAB,curcuminand[bmin][BF4] Thus, boththeelectrostaticinteractionand thetendencyof the hydrophobicchainstocometogetherfurtherencouragethe for-mationofmicellesandhencelowersthecmc.Similarly,thecmc

ofSDSdecreasedsignificantlyinthepresenceofIL(Table3).The loweringofthecmcofSDSinthepresenceofILwasalsoreported earlier[3]andthis couldbeattributedtoboththehydrophobic effectandtheattractionbetweentheanionicSDSandthepositively chargedIL.ThecmcofTX100inILincreasesfrom0.2mMto0.4mM

byStokes’shiftmeasurement.Alongwithanarylandaneight car-bonhydrophobicchain(C H ),TX100has100monomoricunits

Trang 6

con-tainsa–OHgroupthatinteractsdirectlywiththeheadgroupof

ILviahydrogenbondinganddipole–dipoleinteractions[4].Ifthe

micellarformationofTX100hadtobefavorableinthepresence

ofIL,thentheimmediatelyavailableethericmonomericgroupof

TX100(afterthe–OHgroup)mustinteractwiththeimmediately

availablehydrophobictailofIL(afterthepolarheadgroup)

How-ever,theshorthydrophobictailofILandthepolarmonomericchain

ofTX100makethisinteractionunfavorableatlowconcentrations

Thus,toformmicelles,theethericchainsofTX100mustovercome

thehydrophobiceffectinducedbythetailoftheIL.Thiscausesthe

cmcofTX100toincreaseinthepresenceofIL

4 Conclusion

Theassociationofdye/drugmoleculewithsurfactantsolutions

dependsonthechargeof theheadgroupof thesurfactantand

physiochemicalpropertiesofthedye[36–39].Thepresentbinding

studyofcurcuminwithvarioussurfactantsolutionsandquenching

ofcurcuminbyo-nitrophenolclearly predictelectrostatic

inter-action of head group of surfactant molecule and deprotonated

form of curcumin, while curcumin having greatest affinity for

cationic than non-ionic and finally anionic surfactant solution

Theobservationthatthechangesofassociationofdruglike

cur-cuminwithsurfactantsolutionsaredramaticinthepresenceofIL

[bmin][BF4]comparedtowithoutIL[bmin][BF4]presentsclear

evi-dencetheimportanceofIL[bmin][BF4]inmodulatingassociation

ofcurcuminwithsurfactantsolutions.Theinteractioninvolving

non-ionicTX100surfactantappeartohavemoredramaticeffect

ontheassociationofcurcumin-surfactantsolutionscomparedto

thatinvolvingcationicCTABandthenanionicSDSsurfactantdue

tointeractionsofIL[bmin][BF4],curcuminandheadgroupofthe

surfactant.Thoughthemajorreasonforalternationofaggregation

numberbyIL[bmin][BF4][3,4]isduetoelectrostaticinteractions

betweenheadgroupofthesurfactantandanion[46]orcation[47]

oftheIL[bmin][BF4],ourresultsshowingearlyformationofmicelle

irrespectiveofcationicoranionicaqueoussurfactantsolutionsand

delayinmicelleformationinthecaseofneutralaqueoussurfactant

solutionsuggesthydrophobicinteractionofIL[bmin][BF4]doplay

acrucialrole.Thesefindingswillfurtherenhancepotential

appli-cationofILasamodulatorinsolubilizationinthemicellarsystem,

associationofdrug–surfactantduringdrugdelivery,micellization

andchemistry

Acknowledgements

Financialsupportprovided byLebaneseNationalCouncil for

Scientific Research (LNCSR) and American University of Beirut,

LebanonthroughtheUniversityResearchBoard(URB)and

Long-termFacultyDevelopmentgranttocarryoutthisworkisgreatly

acknowledged

Appendix A Supplementary data

Supplementarydataassociatedwiththisarticlecanbefound,in

theonlineversion,atdoi:10.1016/j.saa.2011.05.064

References

[1] J.H Fendler, Membrane Mimetic Chemistry: Characterisation and Applications

of Micelles, Microemulsions, Monolayers, Vesicles and Host–Guest Systems, Wiley, New York, 1983.

[2] Y Moroi, Micelles: Theoretical and Applied Aspects, Springer, New York, 1992.

[3] K Behera, S Pandey, J Phys Chem B 111 (2007) 13307.

[4] K Behera, M.D Pandey, M Porel, S.J Pandey, J Chem Phys 127 (2007) 184501 [5] R Humphry-Baker, M Grätzel, Y Moroi, Langmuir 22 (2006) 11205 [6] S Göktürk, M Tuncay, Spectrochim Acta Part A 59 (2003) 1857.

[7] C Jungnickel, J Łuczak, J Ranke, J.F Fernández, A Müller, J Thöming, J Colloid Surf A 316 (2008) 278.

[8] M Aoudia, M.A.J Rodgers, Langmuir 22 (2006) 9175.

[9] I Chattopadhyay, K Biswas, U Bandyopadhyayn, R.K Banerjee, Curr Sci 87 (2004) 44.

[10] O Sharma, Biochem Pharmacol 25 (1976) 1811.

[11] K.C Srivastava, A.V.S Bordia, Leuk Essent Fatty Acids 52 (1995) 223 [12] Y.M Sun, H.Y Zhang, D.Z Chen, C.B Liu, Org Lett 4 (2002) 2909.

[13] A Barik, K.I Priyadarsini, H Mohan, Photochem Photobiol 77 (2003) 597.

[14] W Feng, W Xia, W Fei, S Liu, Z Jia, J Yang, J Fluorescence 16 (2006) 53.

[15] A Barik, B Mishra, A Kunwar, K.I Priyadarsini, Chem Phys Lett 436 (2007) 239.

[16] N.W Clifford, K.S Iyer, C.L Raston, J Mater Chem 18 (2008) 162.

[17] S Bisht, G Feldmann, S Soni, R Ravi, C Karikar, A Maitra, J Nanobiotechnol 5 (2007) 1.

[18] M.H.M Leung, H Colangelo, T.W Kee, Langmuir 24 (2008) 5672.

[19] M.A Rankin, B.D Wagner, Supramol Chem 16 (2004) 513.

[20] K.N Baglole, P.G Boland, B.D Wagner, J Photochem Photobiol A 173 (2005) 230.

[21] S.V Jovanovic, C.W Boone, S Steenken, A Trinoga, R.B Kaskey, J Am Chem Soc 123 (2001) 3064.

[22] P.K Vemula, J Li, G John, J Am Chem Soc 128 (2006) 8932.

[23] S.V Jovanovic, S Steenken, C.W Boone, M.G Simic, J Am Chem Soc 121 (1999) 9677.

[24] Y Wang, K.-M Wang, G.-L Shen, R.-Q Yu, Talanta 44 (1997) 1319.

[25] K.R Seddon, Green Chem 4 (2002) G25.

[26] T Welton, Chem Rev 99 (1999) 2071.

[27] P Wasserscheid, T Welton, Ionic Liquids in Synthesis, Wiley-VCH, New York, 2003.

[28] A.M Funston, T.A Fadeeva, J.F Wishart, E.W Castner Jr., J Phys Chem B 111 (2007) 4963.

[29] A Paul, A Samanta, J Phys Chem B 111 (2007) 1957.

[30] K Iwata, M Kakita, H Hamaguchi, J Phys Chem B 111 (2007) 4914 [31] N Li, Q Cao, Y Gao, J Zhang, L Zheng, X Bai, B Dong, Z Li, M Zhao, L Yu, ChemPhysChem 8 (2007) 2211.

[32] J.L Anderson, V Pino, E.C Hagberg, V.V Sheares, D.W Armstrong, Chem Com-mun (2003) 2444.

[33] Z Miskolczy, K Sebök-Nagy, L Biczók, S Göktürk, Chem Phys Lett 400 (2004) 296.

[34] K.A Fletcher, S Pandey, J Phys Chem B 107 (2003) 13532.

[35] K.A Fletcher, S Pandey, Langmuir 20 (2004) 33.

[36] A.M Wiosetek-Reske, S Wysocki, Spectrochim Acta Part A 64 (2006) 1118.

[37] P Pal, H Zeng, G Drocher, D Girard, R Giasson, L Blanchard, L Gaboury, L Villeneuve, J Photochem Photobiol A 98 (1996) 65.

[38] M Sarkar, S Poddar, Spectrochim Acta Part A 55 (1999) 1737.

[39] S Göktürk, J Photochem Photobiol A 169 (2005) 115.

[40] H.H Tonnesen, J.Z Karlsen, Lebensm Unters Forsch 180 (1985) 402 [41] J.A Degheili, R.M Al-Moustafa, D Patra, B.R Kaafarani, J Phys Chem A 113 (2009) 1244.

[42] R.M Al-Moustafa, J.A Degheili, D Patra, B.R Kaafarani, J Phys Chem A 113 (2009) 1235.

[43] N.C Maiti, M.M.G Krishna, P.J Britto, N.J Periasamy, J Phys Chem B 101 (1997) 11051.

[44] R Chaghi, L.-C De Menorval, C Charnay, G Darrien, J Zajac, J Colloid Interface Sci 326 (2008) 227.

[45] J.R Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic, Plenum Publishers, New York, 1999.

[46] K Behera, S Pandey, J Colloid Interface Sci 331 (2009) 196.

[47] K Behera, H Om, S Pandey, J Phys Chem B 113 (2009) 786.

Ngày đăng: 01/07/2014, 13:23

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm