1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Chuyên đề Mạng truyền dẫn quang (TS. Võ Viết Minh Nhật) - Bài 5 Mạng chuyển mạch gói quang OPS potx

27 559 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 27
Dung lượng 611,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

o WDM optical packet switching can hence be viewed as a layer where fast changing connections are managed without affecting underlying wavelength circuit pipes.. In other words, as i

Trang 1

Chuyên ê: đ M ng truy n d n ạ ề ẫ

Trang 2

M c tiêu ụ

o Bài này nh m cung c p cho h c viên các ki n th c ằ ấ ọ ế ứ

và k năng v : ỹ ề

 vì sao mô hình chuy n m ch gói quang đ c đ xu tể ạ ượ ề ấ

 m t s mô hình chuy n m ch gói quang tiêu bi uộ ố ể ạ ể

 nh ng c n tr đ i v i s phát tri n c a mô hình ữ ả ở ố ớ ự ể ủ

chuy n m ch gói quang ể ạ

Trang 3

N i dung trình bày ộ

5.1 Introduction

5.2 Optical Packet Switching Fabric

5.2.1 The principle of wavelength routing switch (WRS)

Trang 4

5.1 T ng quan ổ

o Không gi ng nh m ng k thu t chuy n m ch kênh ố ư ạ ỹ ậ ể ạ

(circuit) WDM, chuy n m ch gói quang OPS (optical ể ạ

packet switching) v n đang giai đo n phát tri n M c dù ẫ ạ ể ặ

đã có các th c nghi m đ c th c hi n m t s d án ự ệ ượ ự ệ ở ộ ố ự

c p đ i h c hay công ty [8]-[10], OPS v n ph thu c vào ấ ạ ọ ẫ ụ ộ

m t s thành ph n (thi t b ) mà hi n nay v n ch a đ c ộ ố ầ ế ị ệ ẫ ư ượhoàn thi n.ệ

o OPS có các u đi m không th ph nh n khi so sánh v i ư ể ể ủ ậ ớchuy n m ch gói đi n: Th nh t, nó lo i b hoàn toàn các ể ạ ệ ứ ấ ạ ỏ

gi i h n v v t lý đ i v i vi c k t n i đa b x lý v i m t ớ ạ ề ậ ố ớ ệ ế ố ộ ử ớ ộ

s l ng l n các ngu n nuôi Th 2, nó lo i b hi n t ng ố ượ ớ ồ ứ ạ ỏ ệ ượxuyên nhi u đi n t v n có trong các h th ng truy n ễ ệ ừ ố ệ ố ề

thông đi n t c đ cao, mà đi u này thông th ng gây ra ệ ố ộ ề ườ

t p âm (crosstalk) trong đ ng truy n.ạ ươ ề

Trang 5

o Có 2 s đ , WDM và TDM, đ c đ xu t đ i v i OPS :ơ ồ ượ ề ấ ố ớ

 V i chuy n m ch gói TDM, vi c cài đ t t c đ gói cao ng m hi u ớ ể ạ ệ ặ ố ộ ầ ể

r ng c n ph i s d ng các chuy n m ch t c đ cao => yêu c u ằ ầ ả ử ụ ể ạ ố ộ ầ các c ng quang, thay vì các c ng đi n ổ ổ ệ

 V i chuy n m ch gói WDM, kh năng m ng thông tin c a các ớ ể ạ ả ạ ủ

b c sóng t i các c ng vào cũng nh các c ng ra đã làm gi m nh ướ ạ ổ ư ổ ả ẹ các yêu c u chuy n m ch cao Chuy n m ch gói WDM do đó s n ầ ể ạ ể ạ ẳ sàng k t h p v i t ng đi n (electronic-layer) mà đó các x lý ế ợ ớ ầ ệ ở ử

đi n có th th c hi n v i t c đ cao ệ ể ự ệ ớ ố ộ

o V i quan đi m nh v y, chuy n m ch quang WDM d ng ớ ể ư ậ ể ạ ườ

nh t t h n TDM, tuy nhiên nó v n yêu c u m t s lo i ư ố ơ ẫ ầ ộ ố ạthi t b đang trong giai đo n th nghi m nh các b đ m ế ị ạ ử ệ ư ộ ệquang (optical buffering) [8]

Trang 6

o Furthermore, the ability to switch optical

packets rather than whole wavelengths has got a significant advantage:

 With the help of buffering, the ability of packing

wavelengths directly at the optical layer obviously

improves bandwidth efficiency

 From a general system overview, adding a faster level

of time-domain multiplexing beneath the electronic layer indeed increases aggregation efficiency

Trang 7

o Actually, breaking down wavelengths into smaller controllable entities (i.e optical packets) adds a new level of granularity between electronic

networks and wavelength switched transport

networks

o WDM optical packet switching can hence be

viewed as a layer where fast changing

connections are managed without affecting

underlying wavelength circuit pipes In other

words, as it is the case in electronic networks, optical packet and circuit switching, rather than being mutually exclusive, are complementary.

Trang 8

Switching Layers: The Big Picture

Trang 9

o As shown in Figure, each switching level corresponds to a specific granularity Besides, the network should be able

to assign different connection sizes depending on the

customer needs and data processing capabilities

o The separation of the path setting and forwarding

functions in ATM, and more recently in MPLS-enabled IP, optical packet switching makes a promising candidate to support the multiple routing algorithms transparently

This implies processing labels (IP) or virtual circuit

identifiers (ATM) at the optical layer, using optical label switching (OLS)

Trang 10

5.2 Optical Packet Switching Fabric

o Most optical packet schemes have proposed

splitting large data entities into equal optical

packets All switching methods presented here deal with fixed-length packets that use the same wavelength for payload and header

Trang 11

o A packet is composed of the header, containing

mainly destination and control information, and the payload

o The three key functions of a packet switch are:

1 directing incoming packets to the appropriate outputs

Trang 13

o As shown in Figure, an optical packet switching node has generally three sections: the input and output interfaces, and the switching section itself.

o Packets entering the input interface are split among the electronic and optical sections

o The copy entering the electronic section provides header information to the switch That information is used to

determine the packet’s position in the optical section, as well as its destination

o Meanwhile, the copy of the same packet entering the

optical section is delayed by the amount of time

necessary for electronic processing of the header Packet position information from the electronic section is used

by the optical synchronization module to align the packet

in time, relative to the master clock

Trang 14

o Therefore, the input interface creates a synchronous

packet flow at the input of the switching fabric and

provides the electronic switching controller with

necessary destination and packet position information

That information is used by the switch controller to

operate the optical components in the switch fabric so as

to switch and buffer the packet correctly

o The output interface performs such functions as power level adjustment, signal shaping, header updating and

insertion, and wavelength allocation, if necessary

o Hence, at each time-slot, packets are switched from one wavelength to another That means that packets should

be somehow demultiplexed in wavelength before entering

a packet switch

Trang 15

o In the node configuration, the WDM optical packet

traffic of each fiber enters a WDM demultiplexer [10] Packets of the same wavelength enter the same switching plane That architecture requires as many switches as the number of wavelengths used in the system

Trang 16

The principle of wavelength routing switch (WRS)

o The switch fabric performs the

two main functions of an optical

packet switch, namely switching

and buffering

o Tunable wavelength converters

(TWC) convert incoming

packets to wavelengths

corresponding to fixed output

filters, thus accomplishing the

switching function

o Then an active demultiplexer

directs the packet to the

corresponding delay line,

representing delays from 0 to d

packet durations

Trang 17

o The electronics controlling the TWCs and active

demultiplexers (the shaded components) insures the

arrival of a single packet per wavelength and per slot to the passive coupler

time-o That being dtime-one, the fixed filter at each time-output alltime-ows only the packet destined for that particular output and time-slot to leave the switch

o In addition, control electronics implement the system’s routing algorithm and optimize switching, while insuring that no two packets of the same wavelength enter the same buffer simultaneously

o The active demultiplexers are generally a combination of passive couplers and semiconductor optical amplifier

(SOA) gates, but arrayed waveguide (AWG) devices can

be used to achieve the same functionality Buffers are

Trang 18

18

Trang 19

Broadcast and Select Switch (BSS)

Trang 20

o All the packets are then combined and split over all the b+1 delay-lines Hence, each output block receives a copy

of all incoming packets with all possible delays

o Packets then go through a first gate bank that selects the right time-window, or the right packet delay, thus

accomplishing the buffering function At this point,

output ports have selected a time-slot containing at most one packet at each wavelength

o Those packets go through a second bank of gates with fixed filters By controlling the gates so as to select a unique wavelength, the electronic layer effectively maps the output port to a specific input packet, thus achieving the switching function

Trang 21

Broadcast and Select Switch (BSS)

Trang 22

Multiwavelength Loop Switch (MLS)

o The last switching fabric example presented here is the multiwavelength loop switch (MLS), described in Figure

Trang 23

o In an MLS, multiple packets are stored in a single fiber loop on different wavelengths Electronics control the

input TWCs, the output tunable filters, and the amplifier gates inside the loop

o Before entering the loop, TWCs convert every incoming packet to a wavelength different from the wavelengths already present in the loop

o At each rotation, packets split into two: one copy remains

in the loop while the second copy is split among the

output tunable filters

o If those filters are not tuned to that specific packet

wavelength, the exiting packet copy is lost

Trang 24

o The copy remaining in the loop is further split and can only pass through the fixed loop filter corresponding to its wavelength, then through the amplifier gate following

it

o At this stage, the gate should theoretically allow the

packet to loop indefinitely

o All the splitting the packets undergo is compensated by

an EDFA at each loop rotation

o If one of the output filters is tuned to a given packet’s wavelength, that packet would leave the switch at that output

o The copy of the packet remaining inside loop should

simultaneously be blocked by the amplifier gate, hence freeing the packet’s wavelength for a new incoming

packet

Trang 25

o In the MLS architecture, mapping input to output ports (the switching function) is done in

coordination between TWCs and tunable filters, whereas the delay for each packet (the buffering function) is determined by the action of the

tunable filters and the amplifier gates

o WDM is crucial for both functions The resulting architecture is flexible, for it allows multicast

connections However, repeated packet splitting and amplification are the sources of physical

limitations

Trang 26

5.5 K t lu n ế ậ

o Bài này đã trình bày các ki n th c và k năng v : ế ứ ỹ ề

 vì sao mô hình chuy n m ch gói quang đ c đ xu tể ạ ượ ề ấ

 m t s mô hình chuy n m ch gói quang tiêu bi uộ ố ể ạ ể

 nh ng c n tr đ i v i s phát tri n c a mô hình ữ ả ở ố ớ ự ể ủ

chuy n m ch gói quang ể ạ

Trang 27

Câu h i ? ỏ

Ngày đăng: 29/06/2014, 07:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w