1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo khoa học " Cordyceps militaris polysaccharides can enhance the immunity and antioxidation activity in immunosuppressed mice " pptx

6 588 4
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 0,99 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Effect of CMP on the SOD activity in the hearts, livers and kidneys of the immunosuppressed mice.. 5.Effect of CMP on the CAT activity in the hearts, livers and kidneys of the immunosupp

Trang 1

j our na l h o me p ag e : w w w e l s e v i e r c o m / l o c a t e / c a r b p o l

Cordyceps militaris polysaccharides can enhance the immunity and antioxidation activity in immunosuppressed mice

Mi Wanga,b, Xin Yu Mengb, Rui Le Yangb, Tao Qina, Xiao Yang Wangb, Ke Yu Zhangb, Chen Zhong Feib, Ying Lib, Yuan liang Hua,∗, Fei Qun Xueb,∗∗

a Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China

b Department of Pharmacy, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China

a r t i c l e i n f o

Article history:

Received 18 January 2012

Received in revised form 28 February 2012

Accepted 8 March 2012

Available online 19 March 2012

Keywords:

Cordyceps militaris polysaccharides

Cyclophosphamide-induced

immunosuppression

Immunomodulation

Anti-oxidation activity in vivo

a b s t r a c t

ToevaluatetheimmuneactivationandreactiveoxygenspeciesscavengingactivityofCordyceps mili-tarispolysaccharides(CMP)invivo,90maleBALB/cmicewererandomlydividedintosixgroups.The miceinthethreeexperimentalgroupsweregivencyclophosphamideat80mg/kg/dviaintraperitoneal injectionand17.5,35,or70mg/kgbodyweightCMPviagavage.Thelymphocyteproliferation, phago-cyticindex,andbiochemicalparametersweremeasured.Theresultsshowthattheadministrationof CMPwasabletoovercometheCY-inducedimmunosuppression,significantlyincreasedthespleenand thymusindices,andenhancedthespleenlymphocyteactivityandmacrophagefunction.CMPcanalso improvetheantioxidationactivityinimmunosuppressedmice,significantlyincreasethesuperoxidase dismutase,catalase,andglutathioneperoxidaselevelsandthetotalantioxidantcapacity,anddecrease themalondialdehydelevelsinvivo

© 2012 Elsevier Ltd All rights reserved

1 Introduction

In recent years, many natural polysaccharides and

polysaccharide-protein complexes were isolated from fungi

and usedas a source oftherapeutic agents (Novak &Vetvicka,

2008) Among them, Cordyceps militaris, an entomopathogenic

fungusbelongingtotheclassAscomycetes,hasbeenextensively

usedasacrudedrugandafolktonicfoodinEastAsia.C.militaris

isknownastheChineserarecaterpillarfungusand hassimilar

pharmacologicalactivitiestothewell-knownChinesetraditional

medicineCordycepssinensis(Gai,Jin,Wang,Li,&Li,2004;Zheng&

Cai,2004).ThebeneficialeffectsofCordycepsonrenalandhepatic

functionsand immunomodulation-related antitumouractivities

aremostpromisinganddeservefurtherattention(Paterson,2008)

VariousbioactiveconstituentsfromtheCordycepsspecieshave

beenreported,suchascordycepin,polysaccharides,antibacterial

andantitumouradenosinederivatives,ophicordin,anantifungal

agent,and L-tryptophan.Polysaccharides areconsideredone of

themajoractivecomponentsofCordyceps.Purified

polysaccha-ridesfromC.militarishavenumerousbiologicalactivities,suchas

antioxidant(Li,Li,Dong,&Tsim,2001;Lietal.,2003),

immunomod-ulatory(Cheungetal.,2009;Kimetal.,2008),antitumour(Park,

∗ Corresponding author Tel.: +86 25 84395203; fax: +86 25 84398669.

∗∗ Corresponding author Tel.: +86 21 34293460; fax: +86 21 34293396.

E-mail addresses: ylhu@njau.edu.cn (Y.l Hu), feiqun@gmail.com (F.Q Xue).

Kim,Lee,Yoo,&Cho,2009;Rao,Fang,Wu,&Tzeng,2010),and anti-inflammatory(Raoetal.,2010)

Previous studiesontheimmunomodulatory andantioxidant effects ofC.militarispolysaccharides(CMPs)ininvitrosystems havebeenconducted.CMPscaninducethefunctionalactivationof macrophagesthroughtheupregulationofcytokineexpressionand nitricoxide(NO)release(Leeetal.,2010),induceT-lymphocyte proliferationandsecretionofinterleukin(IL)-2,IL-6,andIL-8(Chen, Zhang,Shen, &Wang,2010), andstimulate thephagocytosisof macrophagesinvitro.Theseresultsconfirmtheimportantroleof CMPsintriggeringimmuneresponses.TheCMPsfractions

P70-1and CBP-1werefoundtoexhibit hydroxylradical-scavenging activityinvitro(Yuetal.,2007,2009)

In the present study, the fruiting body of C militaris came fromShanghai,whichhasbeenscarcelyinvestigated.Successive testswereconductedtoevaluatetheimmuneactivationand reac-tiveoxygenspecies(ROS)-scavengingactivityofCMPinvivo.The detailsarereportedinthecurrentstudy

2 Materials and methods

2.1 Material DryculturedC.militariswasobtainedfromShanghaiDianzhi Bioengineering Corp (Shanghai, China) The material (No 06-01-0727) was identified by Associate Researcher X.H Gao

of the Research Group of Dong Chong Xia Cao, Shanghai

0144-8617/$ – see front matter © 2012 Elsevier Ltd All rights reserved.

Trang 2

Cyclophosphamide (CY) was purchased from Jiangsu Hengrui

Medicine Co., Ltd (Lianyungang, Jiangsu, China) Bovine serum

albumin,CoomassieBrilliantBlueG-250,andcellulosesackswere

purchasedfromSigmaChemicalCo.(St.Louis,MO,USA).Thefilter

membranewaspurchasedfromMilliporeCorp.(Billerica,MA,USA)

Allchemicalsusedintheexperimentswereofanalyticalgrade

2.2 Polysaccharideextraction

PolysaccharidesfromC.militariswerepreparedaspreviously

described(Li,Yang,&Tsim,2006;Yuetal.,2007).Thedried

pow-derofculturedC.militariswasdefattedwithethanolfor10hand

subsequentlyextracted three timeswithhot water (100◦C) for

2h.Theresultingsuspensionwascentrifuged(8000× gfor20min)

andfilteredthrougha0.45␮mmembrane(Millipore).Thefiltered

aqueoussolution wasconcentrated to a specific volume under

reducedpressure.The darkbrownprecipitate wascollectedvia

centrifugationandwashedtwicewithethanol.Theprecipitatewas

thensuspendedinwaterandlyophilizedtoyieldCMPwith41.2%

(w/w)polysaccharidecontent,whichwasmeasuredusing

vitriol-anthronewithanhydrousglucoseasthestandardcontrol

2.3 Animalandexperimentaldesign

MaleBALB/cmice(8weeksold,18hto20g)werepurchased

from Shanghai Slac Laboratory Animal Center of the Chinese

Academyof Sciences (Shanghai, China) Theanimals were

pro-videdwithwater andmousechowadlibitumandwerehoused

inarodentfacilityat(22±1)◦Cwitha12hlight-darkcyclefor

acclimatization.Allproceduresinvolvinganimalsandtheircare

wereapprovedbytheEthicsCommitteeoftheChineseAcademy

ofAgriculturalSciences.Themicewererandomlydividedinto6

groupsconsistingof15miceeach.Threemicefromeachgroupwere

usedforphagocyticindexdeterminationinthecarbonclearance

test,3wereusedforlymphocyteproliferation,and9wereusedfor

theotherexperiments.Allanimalswereallowedoneweektoadapt

totheirenvironmentbeforethetreatment.Twogroupsofhealthy

micewereusedasnormalcontrol(NSgroup)andpositivecontrol

groupsandtreatedoncedailywithphysiologicalsalinesolutionand

70mg/kgbodyweightCMP,respectively,for18days.Fromdays1

to3,theotherfourgroupsofmiceweregiven80mg/kg/dCYvia

intraperitonealinjection.Fromdays4to18,themicewere

admin-isteredasfollows:modelgroup,physiologicalsalinesolution;three

CMPgroups,17.5,35,or70mg/kgbodyweightCMP.CY(0.2ml)was

administeredviaintraperitonealinjection.Theotherswere

admin-isteredviagavagein0.2mlsolutions.Twenty-fourhoursafterthe

lastdrugadministration,theanimalswereweighedandthen

sacri-ficedviadecapitation.Theheart,liver,kidney,spleen,andthymus

wereexcised;thespleenandthymuswereimmediatelyweighed

Thethymusandspleenindiceswerecalculatedaccordingtothe

formula,index(mg/g)=(weightofthymusorspleen)/bodyweight

2.4 Lymphocyteproliferationassay

Themousespleenswereasepticallyremovedfromthe

sacri-ficedmice usingscissors and forceps in 0.1Mcold PBS, gently

incubatedfor4.5hwith10␮lMTT(5mg/ml)perwell.Theplate wascentrifugedat200×gfor15min,andthesupernatewas dis-carded.DMSO(100␮l)wasaddedtoeachwell,whichwasthen shakenuntilallcrystalsdissolved.Theabsorbanceat570nmwas measuredonamicroplatereader(ThermoMultiskanMK3,USA) 2.5 Phagocyticindex

Thefunctionofthemacrophagecellswasassessedviaacarbon clearancetestperformedonthreemicefromeachgroupaccording

totheprocedureofWanget al.(2011).Eachmouse was intra-venouslyinjectedwithdilutedIndiainkat100␮l/10gbodyweight Bloodspecimenswerecollectedat2min(t1)and10min(t2)from theretinalvenousplexuses,and20␮lbloodwasthenmixedwith

2ml0.1%Na2CO3.Theabsorbanceat600nmwasmeasuredona UV-visiblespectrophotometerwith0.1%Na2CO3astheblank.The liverandthespleenwereweighed,andthephagocyticindexwas calculatedasfollows:

K=lgOD1−lgOD2

t2−t1

whereOD1wasfort1andOD2wasfort2 Phagocytic index ˛=√3

K×A/(B+C), where A is the body weight,Bistheliverweight,andCisthespleenweight

2.6 Biochemicalassay Theorganhomogenates(includingtheliver,heart,andkidney) werepreparedina0.1g/mlwetweightofice-coldisotonic physio-logicalsaline.Thesampleswerecentrifugedat2000×gat4◦Cfor

10min,andthesupernateswereusedforthemeasurementofthe protein,T-AOC,MAD,CAT,SOD,andGSH-Pxlevels.TheSODactivity andtheMDAandTAOClevelsweremeasuredvia spectrophotomet-ricmethods.TheMDAlevelwasdetectedusing2-thiobarbituric acid(Uchiyama&Mihara,1978).TheSODactivitywasanalysedvia autooxidationofpyrogallol(Marland&Marklund,1974).TheTAOC levelwasmeasuredusingtheferricreducing/antioxidantpower assay(Benzie&Strain,1996).Theenzymeactivitywasexpressed

innanomolespermilligramofprotein

2.7 Statisticalanalysis Alldataarepresentedasthemean±SD,analysedusingSPSS forWindowsversion15.0 (SPSSInc.,Chicago,IL,USA).The sta-tisticalanalysiswasevaluatedviaone-wayANOVAfollowedby Scheffe’stesttodetecttheintergroupdifferences.AP<0.05values wasconsideredstatisticallysignificant

3 Results

3.1 EffectofCMPonmousespleenandthymusindices Thespleenandthymusindicescanreflecttheimmunefunction andprognosisofanorganism.AsshowninFig.1,thespleenand thy-musindicesofthemodelgroupremarkablydecreasedcompared withthoseofthenormalgroup(P<0.05).CMPincreasedthespleen

Trang 3

Fig 1. Effects of CMP on the internal organ indices of the CY-induced mice *P < 0.05, **P < 0.01 compared with the NS group; # P < 0.05, ## P < 0.01 compared with the model group Values are means ± SD.

andthymusindicesintheCY-treatedmiceinadose-dependent

mannerat17.5,35,and70mg/kg,indicatingthatCMPcanreverse

theCY-inducedatrophyofimmuneorgans

3.2 EffectofCMPoncellularimmunityinmice

Spleenlymphocyteproliferationwasexaminedtounderstand

themechanismoftheimmunoregulatoryactivityofCMP.Asshown

inFig.2,thespleenlymphocyteproliferationofthemodelgroup

remarkablydecreased comparedwiththatof thenormalgroup

(P<0.05).CMPsignificantlyincreasedthespleenlymphocyte

pro-liferationinCY-treatedmiceinadose-dependentmannerat17.5,

35,and70mg/kgcomparedwiththemodelgroup,suggestingthat

CMPisdirectlymitogenicformousesplenocytes

3.3 EffectofCMPonthephagocyticactivityofthemacrophage

system

Carbonclearancetestswereperformedtodeterminetheeffect

ofCMPonmacrophageactivation.Thephagocyticindex˛ofthe

modelgroupwaslowercomparedwiththatoftheNSgroup(Fig.3)

CMPeffectivelyincreasedthe˛valueoftheCY-treatedmiceina

dose-dependentmanner.AtthehighCMPdose(70mg/kg/d),the

phagocyticactivitywasrestoredtoabovethenormallevel(from

4.51to4.74),demonstratingthatCMPcanenhancethemacrophage

functioninCY-treatedmice

3.4 AntioxidantactivityofCMPinvivo

3.4.1 EffectofCMPontheactivityofSODinthedifferentorgans

oftheimmunosuppressedmice

Fig 4 shows that CY significantly reduced the SOD activity

(P<0.01)inthehearts,liversandkidneyscomparedtotheNS

con-trolgroup.AllCMPdosessignificantlyincreasedtheSODactivity

relativetothemodelgroup(P<0.01)

3.4.2 EffectofCMPontheactivityofCATinthedifferentorgans

oftheimmunosuppressedmice

Fig.5showsthemarkedreductionsCATactivity(P<0.01)inthe

hearts,liversandkidneysofmiceintheCY-treatedandNScontrol

groups.CMP(17.5,35,and70mg/kg)significantlyincreasedCAT

activitycomparedtothemodelgroup(P<0.01)

3.4.3 EffectofCMPontheactivityofGSH-Pxinthedifferent

organsoftheimmunosuppressedmice

Fig 6 shows the significant reductions in GSH-Px activity

(P<0.01)inthehearts,liversandkidneysoftheCY-treatedandNS

controlgroups.AllCMPdosessignificantlyincreasedtheGSH-Px

activitycomparedtothemodelgroup(P<0.01)

3.4.4 EffectofCMPontheactivityofTAOCinthedifferentorgans

oftheimmunosuppressedmice Fig 7 shows the remarkable reductions in TAOC activity (P<0.01)inthehearts,liversandkidneysoftheCY-treatedandNS controlgroups.CMP(17.5,35,and70mg/kg)significantlyincreased theTAOCactivitycomparedtothemodelgroup(P<0.01) 3.4.5 EffectofCMPontheactivityofMDAinthedifferentorgans

oftheimmunosuppressedmice Fig.8showsthesignificantincreasesinMDAlevels(P<0.01)

in thehearts,livers and kidneysof theCY-treatedand NS con-trolgroups.AllCMPdosessignificantlydecreasedtheMDAlevels comparedtothemodelgroup(P<0.01)

4 Discussions

CYisacytotoxicchemotherapeuticdrugthatactsasan impor-tantagentintumourtreatment.However,itsadministrationleads

toimmunosuppression,whichmaybelife-threatening(Hong,Yan,

& Baran, 2004) Traditional Chinese medications for immuno-suppression treatment are available In the present study, the protective effects of CMP in reversing the immunosuppression causedbyCYtreatmentwereinvestigated.Theresultsindicatethat CMPcanreversetheCY-inducedatrophyofimmuneorgans

InlinewiththeusageofCordycepsinChina,Chinesemedicines arestronglyrecommendedfortheageingpopulationtoenhance theirimmune system and preventpossible infection Immuno-stimulationitselfisregardedasoneoftheimportantstrategiesto improvethebodysdefensemechanisminelderlypeopleaswellas

incancerpatients.Asignificantamountofexperimentalevidence suggeststhatpolysaccharidesfrommushroomsenhancethehost immunesystembystimulatingnaturalkillercells,T-cells,B-cells, andmacrophage-dependentimmunesystemresponses(Dalmo& Boqwald,2008;Dennert&Tucker,1973).Polysaccharidesobtained fromdifferentnaturalsourcesrepresentastructurallydiverseclass

ofmacromolecules,whichexerttheirantitumouractionmostlyby activatingvariousimmunesystemresponses(Schepetkin&Quinn,

2006).Inpreviousstudies,Cordycepspolysaccharideswerefound

toinducethefunctional activationofmacrophages throughthe upregulationofcytokineexpression(tumournecrosisfactoralpha andIL-1␤)andnitricoxide(NO)release(Leeetal.,2010),aswell

as theproduction of IL-6 and IL-10 in a dose-dependent man-ner.TheypromotethemRNAandproteinexpressionsofinducible nitricoxidesynthase,induceT-lymphocyteproliferationandthe secretionofIL-2,IL-6,andIL-8,andincreasethephagocyticand enzymaticactivitiesoftheacidphosphataseofmacrophages.In thecurrentstudy,theadministrationofCMPsignificantlyenhanced thespleenlymphocyteproliferationandincreasedthephagocytic index˛inadose-dependentmanner,therebyimplyingthatCMP canalsoenhancethespleenlymphocyteactivityandmacrophage functioninCY-treatedmice

Trang 4

Fig 2.Effect of CMP on the spleen lymphocyte proliferation in CY-treated mice *P < 0.05, **P < 0.01 compared with the NS group; # P < 0.05, ## P < 0.01 compared with the model group Values are means ± SD.

Fig 3. Effect of CMP on the phagocytic index in the CY-treated mice *P < 0.05,**P < 0.01 compared with the NS group; # P < 0.05, ## P < 0.01 compared with the model group Values are means ± SD.

Fig 4. Effect of CMP on the SOD activity in the hearts, livers and kidneys of the immunosuppressed mice *P < 0.05, **P < 0.01 compared with the NS group; # P < 0.05, ## P < 0.01 compared with the model group Values are means ± SD.

Fig 5.Effect of CMP on the CAT activity in the hearts, livers and kidneys of the immunosuppressed mice *P < 0.05, **P < 0.01 compared with the NS group; # P < 0.05, ## P < 0.01

±

Trang 5

Fig 6.Effect of CMP on the GSH-Px activity in the hearts, livers and kidneys of the immunosuppressed mice *P < 0.05, **P < 0.01 compared with the NS group; # P < 0.05,

## P < 0.01 compared with the model group Values are means ± SD.

Fig 7. Effect of CMP on the TAOC activity in the hearts, livers and kidneys of the immunosuppressed mice *P < 0.05, **P < 0.01 compared with the NS group; # P < 0.05,

## P < 0.01 compared with the model group Values are means ± SD.

Free-radical-induced lipid peroxidation has been associated

withanumberofdiseases.Theexcessiveproductionoffreeradicals

suchassuperoxide,hydroxylradicals,hydrogenperoxide,andNO

(collectivelyreferredtoasROS)playsmultipleimportantrolesin

tissuedamageandlossoffunctioninanumberoftissuesandorgans

(Simic,Bergtold,&Karam,1989;Zheng&Huang,2001).An

increas-ingamountofevidenceindicatesthatmanykindsof

polysaccha-rideshavepotentialandpotentcapabilitiesofpreventingoxidative

damageinlivingorganismsfromfreeradicalscavenging(Liu,Ooi,

&Chang,1997;Peterszegi,Robert,&Robert,2003;Zhangetal.,

2003).Cordycepspolysaccharidescanscavengefreeradicals,and

theantioxidantactivityofC.militariswasevenstrongerthanthat

ofthe C.sinensisand Cordycepskyushuensis(Chen,Luo,Li, Sun,

& Zhang, 2004) The polysaccharide fractions P70-1and CBP-1

fromC.militarisshowedhydroxylradical-scavengingactivitiesin

aconcentration-dependentmanner,withIC50valuesof0.548and

0.638mg/mlinvitro(Yuetal.,2007,2009).Theresultofthepresent studyisconsistentwiththatofP70-1andCBP-1invitro.When themiceweretreatedwithCY,theT-AOC,CAT,SOD,and

GSH-Px levels in the heart, liver,and kidney remarkably decreased andtheMDAlevelsclearlyincreased.However,the administra-tionofCMP(17.5,35,and70mg/kg)cancausesignificantincreases

intheSOD,CAT,GSH-Px,andTAOClevelsaswellasadecrease

in the MDA levels, thereby indicating that CMP can be effec-tiveinscavengingvarioustypesofoxygenfreeradicalsandtheir products

Inconclusion,thecurrentstudydemonstratesthatCMPalone improvedtheimmunefunctionsandexhibitedeffective antioxi-dantactivitiesintheCY-treatedmice.CMPshouldbeexploredasa goodimmunomodulatoryagentwithantioxidantactivityandmay

beappliedtoantineoplasticimmunotherapyincombinationwith chemotherapeuticagents.However,furtherinvestigationonthe

Fig 8.Effect of CMP on the MDA level in the hearts, livers and kidneys of the immunosuppressed mice *P < 0.05, **P < 0.01 compared with the NS group; # P < 0.05, ## P < 0.01 compared with the model group Values are means ± SD.

Trang 6

Benzie, I F F., & Strain, J J (1996) The ferric reducing ability of plasma (FRAP) as

a measure of antioxidant power, the FRAP assay Analytical Biochemistry, 239,

70–76.

Chen, C., Luo, S S., Li, Y., Sun, Y J., & Zhang, C K (2004) Study on antioxidant activity

of three Cordyceps sp by chemiluminescence Shanghai Journal of Traditional

Chinese Medicine, 38(7), 53–55.

Chen, W X., Zhang, W Y., Shen, W B., & Wang, K C (2010) Effects of the acid

polysac-charide fraction isolated from a cultivated Cordyceps sinensis on macrophages in

vitro Cellular Immunology, 262, 69–74.

Cheung, J K., Li, J., Cheung, A W., Zhu, Y., Zheng, K Y., Bi, C W., et al (2009).

Cordysinocan, a polysaccharide isolated from cultured Cordyceps, activates

immune responses in cultured T-lymphocytes and macrophages: Signaling

cascade and induction of cytokines Journal of Ethnopharmacology, 124(1),

61–68.

Dalmo, R A., & Boqwald, J (2008) Beta-glucans as conductors of immune

sym-phonies Fish Shellfish Immunology, 25, 384–396.

Dennert, G., & Tucker, D (1973) Antitumor polysaccharide lentinan A T cell adjuvant.

Journal of the National Cancer Institute, 51, 1727–1729.

Gai, G Z., Jin, S J., Wang, B., Li, Y Q., & Li, C X (2004) The efficacy of Cordyceps

mili-taris capsules in treatment of chronic bronchitis in comparison with Jinshuibao

capsules Chinese Journal of New Drugs, 13, 169–171.

Hong, F., Yan, J., & Baran, J T (2004) Mechanism by which orally

admin-istered beta-1,3-glucans enhance the tumoricidal activity of antitumor

monoclonal antibodies in murine tumor models Journal of Immunology, 173,

797–806.

Kim, C S., Lee, S Y., Cho, S H., Ko, Y M., Kim, B H., Kim, H J., et al (2008)

Cordy-ceps militaris induces the IL-18 expression via its promoter activation for IFN-␥

production Journal of Ethnopharmacology, 120(3), 366–371.

Lee, J S., Kwon, J S., Yun, J S., Pahk, J W., Shin, W C., Lee, S Y., et al.

(2010) Structural characterization of immunostimulating polysaccharide

from cultured mycelia of Cordyceps militaris Carbohydrate Polymers, 80(4),

1011–1017.

Li, S P., Li, P., Dong, T T X., & Tsim, K W K (2001) Anti-oxidation activity of

different types of natural Cordyceps sinensis and cultured Cordyceps mycelia.

Phytomedicine, 8(3), 207–212.

Immunomodulatory aspects and mechanisms of action Journal of Immunotoxi-cology, 5, 47–57.

Park, S E., Kim, J G., Lee, Y W., Yoo, H S., & Cho, C K (2009) Antitumor activity of water extracts from Cordyceps militaris in NCI-H460 cell xenografted nude mice Journal of Acupuncture and Meridian Studies, 2, 294–300.

Paterson, R R M (2008) Cordyceps-A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry, 69, 1469–1495.

Peterszegi, G., Robert, A M., & Robert, L (2003) Protection by l-fucose and fucose-rich polysaccharides against ROS-produced cell death in presence of ascorbate Biomedicine & Pharmacotherapy, 57, 130–133.

Rao, Y K., Fang, S H., Wu, W S., & Tzeng, Y M (2010) Constituents isolated from Cordyceps militaris suppress enhanced inflammatory mediator’s production and human cancer cell proliferation Journal of Ethnopharmacology, 131(2), 363–367 Schepetkin, I A., & Quinn, M T (2006) Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential International Immunopharmacol-ogy, 6, 317–333.

Simic, M G., Bergtold, D S., & Karam, L R (1989) Generation of oxygen radicals in biosystems Mutation Research, 214, 3–12.

Uchiyama, M., & Mihara, M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test Analytical Biochemistry, 86, 271–278 Wang, H., Wang, M Y., Chen, J., Tang, Y., Dou, J., Yu, J., et al (2011) A polysac-charide from Strongylocentrotus nudus eggs protects against myelosuppression and immunosuppression in cyclophosphamide-treated mice International Immunopharmacology, 11(11), 1946–1953.

Yu, R M., Yang, W., Song, L Y., Yan, C Y., Zhang, Z., & Zhao, Y (2007) Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris Carbohydrate Polymers, 70(4), 430–436.

Yu, R M., Yin, Y., Yang, W., Ma, W L., Yang, L., Chen, X J., et al (2009) Structural elu-cidation and biological activity of a novel polysaccharide by alkaline extraction from cultured Cordyceps militaris Carbohydrate Polymers, 75(1), 166–171 Yuan, H., Song, J., Li, X., Li, N., & Dai, J (2006) Immunomodulation and antitumor activity of kappa-carrageenan oligosaccharides Cancer Letters, 243, 228–234 Zhang, Q B., Li, N., Zhou, G F., Lu, X L., Xu, Z H., & Li, Z (2003) In vivo antioxi-dant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta)

in aging mice Pharmacological Research, 48, 151–155.

Zheng, H C., & Cai, S Q (2004) Medicinal botany and pharmacognosy Beijing: People’s Medical Publishing House.

Zheng, R L., & Huang, Z Y (2001) Reactive oxygen species Beijing: China Higher Education Press/Springer Press.

Ngày đăng: 28/06/2014, 11:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm