Chương 9Thuyết động học phân tử cácchất khí vμ định luật phân bốVật lý đại cương II... Mở đầu• Chuyển động nhiệt: chuyển động hỗn loạn củacác phân tử/ nguyển tử / xác định nhiệt độ củavậ
Trang 1Bμi giảng Vật lý đại cươngTác giả: PGS TS Đỗ Ngọc Uấn
Viện Vật lý kỹ thuậtTrường ĐH Bách khoa Hμ nội
Trang 2• Tμi liÖu tham khaá:
1 Physics Classical and modern
Frederick J Keller, W Edward Gettys,
Trang 3Prentice Hall; 2005,1996, 1993.
5 Vật lý đại cương các nguyên lý vμ ứng dụng, tập I, III Do Trần ngọc Hợi chủ biên
http://nsdl.exploratorium.edu/
• Tμi liệu học chính thức: Vật lý đại cương:
Dùng cho khối các trường ĐH kỹ thuật công
nghiệp (LT&BT) NXB Giáo Dục
Trang 4• C¸ch häc: Lªn líp LT: nghe gi¶ng, ghi bμi.
VÒ nhμ: Xem l¹i bμi ghi, hiÖu chØnh l¹i cïng tμiliÖu -> Lμm bμi tËp ë nhμ
Thi: 10 c©u tr¾c nghiÖm + 2 c©u tù luËn lý thuyÕtbμi tËp §iÓm thi hÖ sè 0,7
Trang 5Chương 9Thuyết động học phân tử cácchất khí vμ định luật phân bố
Vật lý đại cương II
Trang 6Mở đầu
• Chuyển động nhiệt: chuyển động hỗn loạn củacác phân tử/ nguyển tử / xác định nhiệt độ củavật Đối tượng của vật lý phân tử vμ Nhiệt
động lực học
Hai phương pháp nghiên cứu:
Phương pháp thống kê:NC qúa trình đối với
từng phân tử riêng biệt + định luật thống kê
>Tìm Quy luật chung của cả tập thể phân tử vμgiải thích các tính chất của hệ (dựa vμo cấu tạo phân tử)
Trang 7 Phương pháp nhiệt động lực : NC biến hoá năng lượng về: Dạng, định lượng ; Dựa vμo kết quả của thực nghiệm:
Nguyên lý I & Nguyên lý II nhiệt động lực học
→ Dựa vμoTính chất &Điều kiện (Không cần NC bản chất cấu tạo phân tử.)
→ Giải quyết vấn đề thực tế tốt.
Trang 8Đ1 Những đặc trưng cơ bảncủa khí lý tưởng cổ điển
• Hệ nhiệt động : gồm nhiều phân tử/nguyên
Trang 9Pa S
P
m
N
đơn vị
Trang 10• Nhiệt độ: đại l−ợng đặc tr−ng cho độ nóng,
lạnh
Đo bằng nhiệt kế (Đo nhiệt độ bằng cách đo một
đại l−ợng vật lý biến thiên theo nhiệt độ:
ví dụ: độ cao cột thuỷ ngân, suất điện động).
• Nhiệt độ tuyệt đối (K-Kelvin), nhiệt độ Báchphân (0C -Celsius):
TK = toC + 273,16
• Nhiệt độ Fahrenheit
o o
32 C
t 5
9 )
F (
Trang 11Đ2 Phương trình trạng thái của khí
lý tưởng
1 Các định luật thực nghiệm về chất
khí:
* ĐL Boyle-Mariotte : Với 1 khối khí
(m=const) Nếu T=const (Đẳng nhiệt) , thì
Trang 12Sai lệch giữa các định lý trên với thựcnghiệm: khi p cao (p>500at) hoặc T thấp & cao.
Khí lý tưởng: Khí tuân theo ĐL Boyle-Mariotte
Trang 13p T
V
p
2
2 2
m = μ
= ρ
RT
m pV
j31
,8
RT
Vp
Trang 141 nh÷ng c¬ së thùc nghiÖm vÒ chÊt khÝ:
* KÝch th−íc ph©n tö cì 10-10m; ë kho¶ng c¸ch:r<3.10-10m: §Èy nhau;
Trang 15a Các chất cấu tạo gián đoạn vμ gồm một số lớncác phân tử.
a,b đúng với mọi chất; c,d chỉ đúng với khí LT
Trang 16v1 v2
ΔS- phần diện tích thμnh-đáy trụ,
Δt -thời gian va đập; v.Δt-chiều cao trụ
Số phân tử chứa trong trụ: n=n0 v.Δt ΔS;
Số ftử va chạm với đáy trụ:
S
F p
Δ
=
v.Δt
s t v
n 6
1 6
n
n = = 0 Δ Δ Δ
S t
v
n 6
1 t
v m
2 n
t
v m
= n m v S 3
0 0
2 0
0m v
n 3
1
p =Xung l−ợng lực do 1 ftử:fΔt=|m0v2- m0v1 |=-2m0v
Trang 17v v
2 n
2 2
2 1
=
W
n 3
2 2
v
m n
3
2 v
m
n 3
1
2 0 0
2 0
2
N 2
RT 3
V n
RT 2
3 W
V
RT W
n 3
2 p
0
=
Trung b×nh b×nhph−¬ng vËn tèc
Trang 18R=kN & Nm0 = μ; m0 - khối lượng 1 phân tử.
kT 2
m 2
với nhiệt độ tuyệt đối của khối khí
* T lμ số đo cường độ chuyển động hỗn loạn củacác phân tử của hệ.-> chuyển động nhiệt
v
0 2
c
Trang 19Dưới cùng một áp suất vμ nhiệt độ mọi chất khí
3 2
p 3 W
2
p
3 n
W
n 3
10
38 ,
1
10
013 ,
1 kT
p
4 Mật độ phân tử:
Vậy:
Trang 204 Nội năng khí lý tưởng
Nội năng = Động năng + thế năng tương tác giữacác phân tử + W dao động cuả các nguyên tử
Bỏ qua tương tác -> Nội năng của khí lý tưởng
Trang 22ikT N
2
iRT
m U
m
μ
= μ
=
Phân bố đều cho các bậc tự do:
ĐL (Maxwell): Động năng trung bình của cácphân tử đ−ợc phân bố đều cho các bậc tự do
của phân tử
Biểu thức tính nội năng: Của một mol lμ của N phân tử:
R=kN; i -số bậc tự doCủa khối khí khối l−ợng m kg:
Trang 23Với điều kiện chuẩn
n n
1 v
n
n
Pi = i
1 n
n P
i
i i
i
2 i i
2
vPv
Đ4 Các định luật phân bố phân tử
1 Xác suất vμ giá trị trung bình:
Số phân tử n lớn, các đại lượng VL đặc trưng củachúng rất khác nhau; Giả sử ni phân tử có vận
tốc vi, vận tốc trung bình:
lμ xác suất tìm thấy phân tử có vận tốc vi
Gía trị bình phươngtrung bình :
Trang 24F(v) đạt cực đại tại
dv ) v (
F n
dn = dn = nF ( v ) dv
kT 2
v m 2
2 0
e v const )
kT 2
=
2 Định luật phân bố phân tử theo vận
tốc maxwell:
dn lμ số pt có vận tốc trong khoảng v đến v+dv, thì xác suất của ft có vận tốc trong khoảng (v,
1 dv
) v ( F n
dv ) v
(
nF
Maxwell tìm ra hμmphân bố:
dv
F(v)
vxs v
0dv
)v(
dF
=
Trang 25) v ( F v
m
kT
3 dv
v ) v ( F v
cv
Trang 260 xs
μπ
= π
m
kT
8 v
0 c
x Xác suất phân tử có vxs lμ cao nhất
y VC ứng với động năng trung bình của phân tử
z Tại nhiệt độ T của hệ, mỗi phân tử có vận tốckhác nhau, lμ giá trị trung bình cộng của vận
tốc các phân tử trong cả hệ (các p/t có cùng v)
v
Trang 273.định luật phân bố phân tử theo
thế năngPhân bố Maxwell không tính đến sức hút của
Trang 28Sè ph©n tö n»m trong cét khÝ:
dn = n0S.dh = n0dh Träng l−îng khèi khÝ:
dP = dn.m0.g = m0 gn0dh
¸p suÊt t¨ng:
dh kT
p g
m dh
gn m
−
=
Trang 29dh kT
g m p
dp
kT
gh m
0
0
e p
p = −
Nồng độ khí tỷ lệ với áp suất:
kT
gh m
d 0 0
0
e n
0
t
e n
hkT
gmp
Trang 30Phân bố Maxwell-Boltzmann
Xác suất hai hiện t−ợng đồng thời độc lập
bằng tích các xác suất xảy ra các hiện t−ợng ấy:Tại vùng toạ độ x ữ x+dx, y ữ y+dy, z ữ z+dz
Tổng số phân tử có vận tốc trong khoảng
vx ữ vx +dvx, vy ữ vy +dvy, vz ữ vz +dvz,
z y
x
)
W 2
v m ( kT
1
dv dv
dxdydzdv Ne
A
dv dxdydzdv
e
A N
dN
z y
x
)
W 2
v m ( kT 1
z , y ,
x v v v
t
2 0
z y x
=
∫
... (Maxwell ): Động trung bình cácphân tử đ−ợc phân bố cho bậc tựcủa phân tử
Biểu thức tính nội năng: Của mol lμ N phân t? ?:
R=kN; i -số bậc tự doCủa khối khí khối l−ợng m kg:
vPv
Đ4 Các định luật phân bố phân tử
1 Xác suất vμ giá trị trung bình:
Số phân tử n lớn, đại lượng VL... độ phân t? ?:
Vậy:
Trang 204 Nội khí lý tưởng
Nội = Động + tương tác giữacác phân tử