| Tài liệu tham khảo |
Loại |
Chi tiết |
| 3. Alsina, C., Ger, R.: On some inequalities and stability results related to the exponential function.J. Inequal. Appl. 2(4), 373–380 (1998) |
Khác |
|
| 4. Burk, F.: Notes: The geometric, logarithmic, and arithmetic mean inequality. Amer. Math.Mon. 94(6), 527–528 (1987) |
Khác |
|
| 5. Carlson, B.C.: The logarithmic mean. Amer. Math. Mon. 79, 615–618 (1972) |
Khác |
|
| 6. Chu, Y.-M., Long, B.-Y.: Best possible inequalities between generalized logarithmic mean and classical means. Abstr. Appl. Anal. Art. ID 303286, 13 p. (2010) |
Khác |
|
| 7. Czinder, P., Páles, Z.: A general Minkowski-type inequality for two variable Gini means. Publ.Math. Debr. 57(1–2), 203–216 (2000) |
Khác |
|
| 8. Czinder, P., Páles, Z.: Minkowski-type inequalities for two variable Stolarsky means. Acta Sci.Math. 69(1–2), 27–47 (2003) |
Khác |
|
| 9. Czinder, P., Páles, Z.: Local monotonicity properties of two-variable Gini means and the comparison theorem revisited. J. Math. Anal. Appl. 301(2), 427–438 (2005) |
Khác |
|
| 10. Czinder, P., Páles, Z.: Some comparison inequalities for Gini and Stolarsky means. Math.Inequal. Appl. 9(4), 607–616 (2006) |
Khác |
|
| 12. Daróczy, Z., Páles, Z.: On comparison of mean values. Publ. Math. Debr. 29, 107–115 (1982) 13. Daróczy, Z, Páles, Z.: Generalized-homogeneous deviation means. Publ. Math. Debr. 33,53–65 (1986) |
Khác |
|
| 14. Fechner, W.: Some inequalities connected with the exponential function. Arch. Math. Brno 44(3), 217–222 (2008) |
Khác |
|
| 15. Fechner, W.: On some functional inequalities related to the logarithmic mean. Acta Math.Hung. 128(1–2), 36–45 (2010) |
Khác |
|
| 16. Fechner, W.: Functional inequalities and equivalences of some estimates. In: Bandle, C., et al. (eds.) Inequalities and Applications: Dedicated to the Memory of Wolfgang Walter (Hajdúszoboszló, Hungary, 2010). International Series of Numerical Mathematics, vol. 161, pp. 231–240. Birkhọuser, Basel (2012) |
Khác |
|
| 17. Fechner, W., Ger, R.: Some stability results for equations and inequalities connected with the exponential functions. In: Rassias, J.M. (ed.) Functional Equations and Difference Inequalities and Ulam Stability Notions (F.U.N.). Mathematics Research Developments, pp. 37–46. Nova Science, New York (2010) |
Khác |
|
| 18. Gantmacher, F.R.: The Theory of Matrices, vol. 2. AMS Chelsea, Providence (1998). (Transl.from the Russian by K.A. Hirsch. Reprint of the 1959 translation) |
Khác |
|
| 19. Ger, R., Kochanek, T.: An inconsistency equation involving means. Colloq. Math. 115(1), 87–99 (2009) |
Khác |
|
| 20. Greene, D., Knuth, D.E.: Mathematics for the analysis of algorithms. Birkhọuser, Boston (2008) (Reprint of the 1990 edn.) |
Khác |
|
| 21. Kuczma, M.: A characterization of the exponential and logarithmic functions by functional equations. Fund. Math. 52, 283–288 (1963) |
Khác |
|
| 22. Kuczma, M.: On a new characterization of the exponential functions. Ann. Polon. Math. 21, 39–46 (1968) |
Khác |
|
| 23. Kuczma, M.: Functional Equations in a Single Variable. Monografie Matematyczne, vol. 46.Pa´nstwowe Wydawnictwo Naukowe, Warsaw (1968) |
Khác |
|
| 27. Leach, E.B., Sholander, M.C.: Extended mean values II. J. Math. Anal. Appl. 92(1), 207–223 (1983) |
Khác |
|