Determine the half-a turns needed b directivity in dB c axial ratio d lower and upper frequencies of the bandwidth over which the required parameters remain relatively constant e input i
Trang 1SINH VIÊN THỰC HIỆN: Đào Thị Kim Trang MSSV:20210854
Đỗ Thùy Linh MSSV :20213982 Chu Duy Hưng MSSV :20213956
MÃ LỚP: 145521
GV HƯỚNG DẪN: Cô Nguyễn Hồng Anh
BÁO CÁO ĂNG TEN VÀ TRUYỀN SÓNG NHÓM 1
TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI
TRƯỜNG ĐIỆN- ĐIỆN TỬ
Trang 2HÀ NỘI 2023
TÊN ĐỀ TÀI THỰC HIỆN – ĐỀ TÀI SỐ 21
Design an end-fire right-hand circularly polarized helix having a power beam- width of 45°, pitch angle of 13°, and a circumference of 60
half-cm at a frequency of 500 MHz Determine the
(a) turns needed
Trang 360 × √ N ×√13.852 = 45 ° (1)
N=5.7839 ≈ 6
b) D=15 × ( N ×C2
× S ) ( λ3) =20.8=13 (dB ) (2)
Trang 4Antenna-Theory-Analysis-and-Design-2nd-Edition-Contantine-a-II Nội dung đóng góp các thành viên
Đào Thị Kim Trang – Nhóm Trưởng –Tính toán + matlab
Chu Duy Hưng – matlab + tìm nội dung
Đỗ Thùy Linh – matlab + tìm nội dung
III Phụ lục (code matlab mô phỏng)
% I Normal Mode
% a Pitch angle alpha (in degrees)
% b Axial ratio (AR)
% c HPBW (in degrees)
% c Directivity (dimensionless and in dB)
% *
% II Axial (End-Fire) Mode
% a Pitch angle alpha (in degrees)
% b Input impedance (ohms)
% c Axial ratio (AR)
% d Relative phase velocity ratio p
% e HPBW (in degrees) (both approximate and numerical)
% f FNNW (in degrees) (both approximate and numerical)
% g Directivity (dimensionless and in dB) (both approximate and numerical)
% 1.Choice of output
%
-% Input 1 for Screen output
% Input 2 for File output
%
% 2.Choice of radiation mode
%
-% Input 1 to select Normal mode
% Input 2 to select Axial (End-Fire) mode
Trang 5%
-% a Number of turns N
% b Circumference of loops C (in lambda)
% c Spacing between turns S (in lambda)
% *
% For axial mode, also need to select end-fire mode:
% Input 1 to select Ordinary End-Fire
% Input 2 to select Hansen-Woodyard End-Fire
%
% 4.Output
%
-% I Normal Mode
% a Pitch angle alpha (in degrees)
% b Axial ratio (AR)
% c HPBW (in degrees)
% c Directivity (dimensionless and in dB)
% d Plot the normalized radiation pattern (0 to -60 dB)
%
% II Axial (End-Fire) Mode
% b Input impedance (ohms)
% c Axial ratio (AR)
% d Relative phase velocity ratio p
% e HPBW (in degrees)
% A Approximate (use Equation 10-31)
% B Numerical (found from pattern)
% f FNNW (in degrees)
% A Approximate (use Equation 10-32)
% B Numerical (found from pattern, set "zero" point to be less
% than 1e-6)
% g Directivity (dimensionless and in dB)
% A Approximate (use Equation 10-33)
% B Numerical (calculated from equation D0=4*pi*Umax/Prad)
% h Plot the normalized radiation pattern (in dB: 0 to -60 dB)
Trang 6ERR = 1;
while(ERR ~= 0)
fprintf('\nSELECT RADIATION MODE:\n');
fprintf(' -\n');
fprintf('(1) NORMAL MODE\n');
fprintf('(2) AXIAL MODE\n\n');
SELECT_mode = str2num(input('SELECT = ', ));'s'
C = str2num(input('Circumference of loops C (in lambda) = ', ));'s'
Trang 7S = str2num(input('Spacing between turns S (in lambda) = ','s'));
step=0.1; % Step: accuracy control
delta=1e-2; % To avoid sigularity in calculation
E=sin(theta); % Element factor
M=2*N; % Image due to ground plane
kesi=2*pi*(S*cos(theta));
AF=sin(M*kesi/2)./sin(kesi/2)/N; % Array factor
U=(E.*AF).^2; % Pattern mutiplicatin
Trang 8% -Echo input parameters and output computed
parameters -fprintf(fid,'\nHELIX: NORMAL MODE:\n');
fprintf(fid,'\nInput parameters:\n -');
fprintf(fid,'\nNumber of turns N = %3.0f',N);
fprintf(fid,'\nCircumference of loops C (in lambda) = %6.4f',C);fprintf(fid,'\nSpacing between turns S (in lambda) = %6.4f',S);
fprintf(fid,'\nLength (one-turn) L0 (in lambda) = %6.4f',sqrt(C^2+S^2));fprintf(fid,['\nLength (',num2str(N),'-turn) LN (in lambda) =
%6.4f'],N*sqrt(C^2+S^2));
fprintf(fid,'\n\nOutput parameters:\n -');
fprintf(fid,'\nAxial Ratio AR (dimensionless) = %6.4f',AR);
fprintf(fid,'\nHPBW (in degrees) = %6.4f',HPBW);
fprintf(fid,'\nDirectivity(approximate) (dimensionless) = 1.5');
fprintf(fid,'\nDirectivity(approximate) (in dB) = 1.7609');
fprintf(fid,'\nDirectivity(numerical from pattern) (dimensionless) =
Trang 9step=0.1; % Step: accuracy control
delta=1e-2; % To avoid sigularity in calculation
Trang 10fprintf('(3) END-FIRE (p=1)\n\n');
SELECT_end = str2num(input('SELECT = ', ));'s'
(SELECT_end== 1)|(SELECT_end == 2)|(SELECT_end == 3)if
Trang 12fprintf(fid,'\nInput parameters:\n -');
fprintf(fid,'\nNumber of turns N = %3.0f',N);
fprintf(fid,'\nCircumference of loops C (in lambda) = %6.4f',C);
fprintf(fid,'\nSpacing between turns S (in lambda) = %6.4f',S);
fprintf(fid,'\nLength (one-turn) L0 (in lambda) = %6.4f',sqrt(C^2+S^2));
fprintf(fid,['\nLength (',num2str(N),'-turn) LN (in lambda) =
%6.4f'],N*sqrt(C^2+S^2));
if (SELECT_end == 1)|(SELECT_end == 2)|(imax == 1)
fprintf(fid,'\n\nOutput parameters:\n -');
fprintf(fid,'\nInput impedance R (ohms)) = %6.4f',R);
fprintf(fid,'\nAxial Ratio AR (dimesionless) = %6.4f',AR);
fprintf(fid,'\nRelative phase velocity ratio p = %6.4f',p);
fprintf(fid,'\n\nDirectivity:');
fprintf(fid,'\n A1 Approximate(10-33) (dimensionless) = %6.4f',D_app);
fprintf(fid,'\n A2 Approximate(10-33) (in dB) = %6.4f',D_app_dB);
fprintf(fid,'BAD DESIGN! MAXIMUM IS NOT AT 0 DEGREES!\n');
fprintf(fid,'PLEASE SEE THE PLOTTED RADIATION PATTERN FOR DETAILS.\n');
Trang 13ylabel('Directivity (dBi)')
title('Peak Directivity Variation vs Frequency')
%impedance of the antenna
figure('name' 'Impedance', )
impedance(hx, 1.5e8:10e6:f)
%Reflection Coeffcient of the antenna
figure('name', 'Reflection coefficient')
S = sparameters(hx, 1.5e8:10e6:f,70);
rfplot(S)
%Return Loss of the antenna
figure('name', 'Return Loss')
Trang 14File chạy kèm polar_dB.m
% polar_dB(theta,rho,rmin,rmax,rticks,line_style)
% POLAR_DB is a MATLAB function that plots 2-D patterns in
% polar coordinates where:
% 0 <= THETA (in degrees) <= 360
% -infinity < RHO (in dB) < +infinity
%
Input Parameters Description
%
-% - theta (in degrees) must be a row vector from 0 to 360 degrees
% - rho (in dB) must be a row vector
% - rmin (in dB) sets the minimum limit of the plot (e.g., -60 dB)
% - rmax (in dB) sets the maximum limit of the plot (e.g., 0 dB)
% - rticks is the # of radial ticks (or circles) desired (e.g., 4)
% - linestyle is solid (e.g., '-') or dashed (e.g., ' ')
% Note: This function is different from the polar.m (provided by
% MATLAB) because RHO is given in dB, and it can be negative
-
% -function hpol = polar_dB(theta,rho,rmin,rmax,rticks,line_style)
% Convert degrees into radians
theta = theta * pi/180;
% Font size, font style and line width parameters
font_size = 16;
font_name = 'Times';
line_width = 1.5;
Trang 15error('Requires 5 or 6 input arguments.')
% Hold on to current Text defaults, reset them to the
% Axes' font attributes so tick marks use them
fAngle = get(cax, 'DefaultTextFontAngle');
fName = get(cax, 'DefaultTextFontName');
fSize = get(cax, 'DefaultTextFontSize');
fWeight = get(cax, 'DefaultTextFontWeight');set(cax, 'DefaultTextFontAngle', get(cax, 'FontAngle'),
'DefaultTextFontName', font_name,
'DefaultTextFontSize', font_size,
'DefaultTextFontWeight', get(cax, 'FontWeight') )
% only do grids if hold is off
Trang 16hold ;on
% v returns the axis limits
% changed the following line to let the y limits become negative
hhh=plot([0 max(theta(:))],[min(rho(:)) max(rho(:))]);
v = [get(cax,'xlim') get(cax,'ylim')];
ticks = length(get(cax,'ytick'));
delete(hhh);
% check radial limits (rticks)
if rticks > 5 % see if we can reduce the number
% change the following line so that the unit circle is not multiplied
% by a negative number Ditto for the text locations
for i=(rmin+rinc):rinc:rmax
is = i - rmin;
plot(xunit*is,yunit*is, ,'-' 'color',tc,'linewidth',0.5);text(0,is+rinc/20,[' ' num2str(i)],'verticalalignment' 'bottom',);
plot((rmax-rmin)*cs,(rmax-rmin)*sn, ,'-' 'color',tc,'linewidth',0.5);
% plot the ticks
george=(rmax-rmin)/30; % Length of the ticks
Trang 17% Changed the next line to make the spokes long enough
% set axis limits
% Changed the next line to scale things properly
% transform data to Cartesian coordinates
% changed the next line so negative rho are not plotted on the other side
Trang 18% reset hold state
if ~hold_state, set(cax,'NextPlot',next); end
IV Hình ảnh mô phỏng và output
Trang 20d) Input impedance
Trang 22Output parameters:
-Input impedance R (ohms)) = 105.0000
Axial Ratio AR (dimesionless) = 1.0833
Relative phase velocity ratio p = 1.0000
V Lời kết
- Cuối cùng nhóm chúng em xin cảm ơn cô đã giúp nhóm em trong suốt quá trình học tập từ tài liệu học tập đến quá trình làm bài tập lớn và trong quá trình làm nhóm em không tránh khỏi những sai sót mong cô góp ý thêm để bài làm được hoàn thiện hơn Nhóm chúng em cảm ơn cô nhiều ạ.
c) Frequency range
Trang 23VI Tài liệu tham khảo
Antenna-Theory-Analysis-and-Design-2nd-Edition-Contantine-a-Balanis
https://github.com/Subhankar2000/
Antenna_Theory_Analysis_and_Design_C.A.Balanis -MATLAB/ blob/master/Chapter%2010/Helix/HELIX.m?
fbclid=IwAR3VXEfmSNa_um6D0Ft5sQDSCvhVgc7DYdC1zIgfzKrich jM2seGmNGih-w