1. Trang chủ
  2. » Luận Văn - Báo Cáo

Bài giảng Phân tích dữ liệu và dự báo: Chương 4 Trường ĐH Quy Nhơn

46 6 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Các Mô Hình Dự Báo Theo Phương Pháp Box-Jenkins
Trường học Trường ĐH Quy Nhơn
Chuyên ngành Phân tích dữ liệu và dự báo
Định dạng
Số trang 46
Dung lượng 1,11 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Bài giảng Phân tích dữ liệu và dự báo: Chương 4 Các mô hình dự báo theo phương pháp box jenkins, cung cấp cho người đọc những kiến thức như: Tính dừng của chuỗi thời gian; Mô hình tự hồi quy AR; Mô hình trung bình động MA; Mô hình ARMA(p,q); Tịnh hóa dữ liệu; Mô hình ARIMA cho dữ liệu có tính mùa vụ; Các bước cơ bản của phương pháp ARIMA. Mời các... Đề tài Hoàn thiện công tác quản trị nhân sự tại Công ty TNHH Mộc Khải Tuyên được nghiên cứu nhằm giúp công ty TNHH Mộc Khải Tuyên làm rõ được thực trạng công tác quản trị nhân sự trong công ty như thế nào từ đó đề ra các giải pháp giúp công ty hoàn thiện công tác quản trị nhân sự tốt hơn trong thời gian tới.

Trang 1

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

CHƯƠNG 4 CÁC MÔ HÌNH DỰ BÁO THEO PHƯƠNG PHÁP BOX-JENKINS

Trang 2

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

1 Hiểu được khái niệm tính dừng và có thể

kiểm định tính dừng của chuỗi thời gian

Trang 3

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

3

1 Tính dừng của chuỗi thời gian

2 Mô hình tự hồi quy AR

3 Mô hình trung bình động MA

4 Mô hình ARMA(p,q)

5 Tịnh hóa dữ liệu

6 Mô hình ARIMA cho dữ liệu có tính mùa vụ

7 Các bước cơ bản của phương pháp ARIMA

DỰ BÁO THEO PHƯƠNG PHÁP BOX - JENKINS

Trang 4

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

4

TÍNH DỪNG CỦA CHUỖI THỜI GIAN

Một chuỗi thời gian dừng có các đặc điểm sau đây:

1 Dữ liệu dao động xung quanh một giá trị trung bình cố định

trong dài hạn

2 Dữ liệu có giá trị phương sai xác định không thay đổi theo

thời gian

3 Dữ liệu có một giản đồ tự tương quan với các hệ số tự

tương quan sẽ giảm dần khi độ trễ tăng lên

Trang 5

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

5

TÍNH DỪNG CỦA CHUỖI THỜI GIAN (tt)

Theo ngôn ngữ thống kê, các đặc điểm trên được thể hiện bởi: (𝑌𝑌 𝑡𝑡 )

1 E(𝑌𝑌 𝑡𝑡 ) là một hằng số cho tất cả các thời điểm t

𝐸𝐸 𝑌𝑌 𝑡𝑡 = 𝜇𝜇, ∀𝑡𝑡

2 Var 𝑌𝑌 𝑡𝑡 là một hằng số cho tất cả các thời điểm t

𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌 𝑡𝑡 = 𝐸𝐸 𝑌𝑌 𝑡𝑡 − 𝜇𝜇 2 = 𝜎𝜎 2 , ∀𝑡𝑡

3 Hiệp phương sai giữa hai giai đoạn chỉ phụ thuộc vào

khoảng cách giữa hai giai đoạn

𝑐𝑐𝑐𝑐𝑐𝑐 𝑌𝑌 𝑡𝑡 , 𝑌𝑌 𝑡𝑡+𝑘𝑘 = 𝐸𝐸 (𝑌𝑌 𝑡𝑡 − 𝜇𝜇)(𝑌𝑌 𝑡𝑡+𝑘𝑘 − 𝜇𝜇) = 𝛾𝛾 𝑘𝑘 , ∀𝑡𝑡

Trang 6

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

6

TÍNH DỪNG CỦA CHUỖI THỜI GIAN (tt)

Hình bên là ví dụ minh họa cho một chuỗi dừng với

Trang 7

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

7

Hình bên là ví dụ minh họa cho một chuỗi không dừng khi trung bình

Trang 8

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

8

Hình bên là ví dụ minh họa cho một chuỗi không dừng khi cả trung bình

và phương sai thay đổi

Trang 9

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

9

TÍNH DỪNG CỦA CHUỖI THỜI GIAN (tt)

Kiểm định tính dừng – Giản đồ tự tương quan

Hệ số tự tương quan bậc 𝑘𝑘 được xác định bởi công thức

𝜌𝜌 𝑘𝑘 = ∑ 𝑡𝑡=𝑘𝑘+1 𝑛𝑛 ∑ (𝑌𝑌 𝑡𝑡 − �𝑌𝑌)(𝑌𝑌 𝑡𝑡−𝑘𝑘 − �𝑌𝑌)

𝑡𝑡=1

𝑛𝑛 𝑌𝑌 𝑡𝑡 − �𝑌𝑌 2 (1) Chia cả tử và mẫu trong (1) cho 𝑛𝑛 ta có

𝜌𝜌 𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑌𝑌 𝑐𝑐𝑉𝑉𝑉𝑉(𝑌𝑌 𝑡𝑡 , 𝑌𝑌 𝑡𝑡−1 )

Các phương trình (1) và (2) được gọi là hàm tự tương quan, ký hiệu AFC.

Trang 10

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

Nếu 𝜌𝜌 𝑘𝑘 nằm ngoài khoảng tin cậy tìm được thì ta bác bỏ giả thuyết 𝐻𝐻 0

TÍNH DỪNG CỦA CHUỖI THỜI GIAN (tt)

Trang 11

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

11

Kiểm định tính dừng – Giản đồ tự tương quan (tt)

Thống kê Q của Ljung – Box

Cặp giả thuyết 𝐻𝐻 0 : 𝜌𝜌 𝑘𝑘 = 0 (chuỗi dừng)

𝐻𝐻 1 : 𝜌𝜌 𝑘𝑘 ≠ 0 Giá trị thống kê 𝑄𝑄: 𝑄𝑄 = 𝑛𝑛 ∑ 𝑘𝑘=1 𝑚𝑚 𝜌𝜌 𝑘𝑘 2

Với cỡ mẫu lớn, 𝑄𝑄 có phân phối 𝜒𝜒 2 với bậc tự do bằng số độ trễ Với 𝛼𝛼 cho trước, nếu giá trị 𝑄𝑄 tính toán lớn hơn giá trị tra tới hạn của 𝜒𝜒 2 thì ta bác bỏ giả thuyết 𝐻𝐻 0

TÍNH DỪNG CỦA CHUỖI THỜI GIAN (tt)

Trang 12

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

12

Kiểm định tính dừng – Giản đồ tự tương quan (tt)

Ví dụ về giản

đồ tự tương quan của một chuỗi không

Trang 13

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

13

Kiểm định tính dừng – Giản đồ tự tương quan (tt)

Ví dụ về giản đồ tự tương quan của một chuỗi dừng

TÍNH DỪNG CỦA CHUỖI THỜI GIAN (tt)

Trang 14

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

14

Kiểm định tính dừng – Kiểm định nghiệm đơn vị

Giả sử có phương trình tự hồi quy sau:

𝑌𝑌 𝑡𝑡 = 𝜌𝜌𝑌𝑌 𝑡𝑡−1 + 𝑢𝑢 𝑡𝑡 (−1 ≤ 𝜌𝜌 ≤ 1) hay Δ𝑌𝑌 𝑡𝑡 = 𝛿𝛿𝑌𝑌 𝑡𝑡−1 + 𝑢𝑢 𝑡𝑡 𝛿𝛿 = 𝜌𝜌 − 1

Ta có các giả thuyết: 𝐻𝐻 0 : 𝜌𝜌 = 1 (𝑌𝑌 𝑡𝑡 là chuỗi không dừng)

𝐻𝐻 0 : 𝜌𝜌 < 1 (𝑌𝑌 𝑡𝑡 là chuỗi dừng) Hay tương đương: 𝐻𝐻 0 : 𝛿𝛿 = 0 (𝑌𝑌 𝑡𝑡 là chuỗi không dừng)

𝐻𝐻 0 : 𝛿𝛿 < 0 (𝑌𝑌 𝑡𝑡 là chuỗi dừng)

TÍNH DỪNG CỦA CHUỖI THỜI GIAN (tt)

Trang 15

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

15

Kiểm định tính dừng – Kiểm định nghiệm đơn vị (tt)

Theo Dickey và Fuller, giá trị t ước lượng của hệ số 𝑌𝑌 𝑡𝑡−1 có phân phối xác suất 𝜏𝜏

Trang 16

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

16

Bảng dưới đây là kết quả kiểm định cho chuỗi có giản đồ tương quan trường hợp không dừng ở trên

Null Hypothesis: GDP has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic - based on SIC, maxlag=10)

t-Statistic Prob.*

TÍNH DỪNG CỦA CHUỖI THỜI GIAN (tt)

Trang 17

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

17

Bảng dưới đây là kết quả kiểm định cho chuỗi có giản đồ tương quan trường hợp chuỗi dừng ở trên

Null Hypothesis: D(GDP) has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=10)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -6.588446 0.0000

TÍNH DỪNG CỦA CHUỖI THỜI GIAN (tt)

Trang 18

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

18

MÔ HÌNH TỰ HỒI QUY - AR

- Mô hình tự hồi quy bậc 1 – AR(1)

𝑌𝑌 𝑡𝑡 = 𝜙𝜙 0 + 𝜙𝜙 1 𝑌𝑌 𝑡𝑡−1 + 𝑢𝑢 𝑡𝑡 (−1 < 𝜙𝜙 1 < 1)

- Mô hình tự hồi quy bậc 2 – AR(2)

𝑌𝑌 𝑡𝑡 = 𝜙𝜙 0 + 𝜙𝜙 1 𝑌𝑌 𝑡𝑡−1 + 𝜙𝜙 2 𝑌𝑌 𝑡𝑡−2 + 𝑢𝑢 𝑡𝑡 (−1 < 𝜙𝜙 1 , 𝜙𝜙 2 < 1; 𝜙𝜙 1 + 𝜙𝜙 2 < 1)

- Mô hình tự hồi quy bậc p – AR(p)

𝑌𝑌 𝑡𝑡 = 𝜙𝜙 0 + 𝜙𝜙 1 𝑌𝑌 𝑡𝑡−1 + 𝜙𝜙 2 𝑌𝑌 𝑡𝑡−2 + ⋯ + 𝜙𝜙 𝑝𝑝 𝑌𝑌 𝑡𝑡−𝑝𝑝 + 𝑢𝑢 𝑡𝑡

( ∑ 𝑖𝑖=1 𝑝𝑝 𝜙𝜙 𝑖𝑖 < 1)

Trang 19

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

19

MÔ HÌNH TỰ HỒI QUY – AR (tt)

- Xác định độ trễ 𝑝𝑝 dựa trên giản đồ tự tương quan theo cách sau: ACF sẽ có xu hướng bằng 0 ngay lập tức, trong khi đó hệ số

tự tương quan riêng phần PACF sẽ có xu hướng khác 0 một cách

có ý nghĩa thống kê cho đến độ trễ 𝑝𝑝 và sẽ bằng 0 ngay sau độ trễ 𝑝𝑝 đó.

- 𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹 𝑘𝑘 đo lường mức độ quan hệ giữa 𝑌𝑌 𝑡𝑡 và 𝑌𝑌 𝑡𝑡−𝑘𝑘 khi các ảnh hưởng của các độ trễ từ 1 đến 𝑘𝑘 − 1 đã được loại trừ.

Trang 20

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

ở bên cho thấy mô hình AR(1)

là thích hợp

MÔ HÌNH TỰ HỒI QUY – AR (tt)

Trang 21

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

21

Bảng bên

là kết quả

ước lượng mô

hình AR(1)

Dependent Variable: Y

Method: Least Squares

Date: 11/21/21 Time: 21:14

Sample (adjusted): 2 75

Included observations: 74 after adjustments

Variable Coefficient Std Error t-Statistic Prob

Adjusted R-squared 0.274342 S.D dependent var 13.79636

S.E of regression 11.75251 Akaike info criterion 7.792666

Sum squared resid 9944.745 Schwarz criterion 7.854938

Log likelihood -286.3286 Hannan-Quinn criter 7.817507

Prob(F-statistic) 0.000001

MÔ HÌNH TỰ HỒI QUY – AR (tt)

Trang 22

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

giá trị sai số quá khứ

- Ta xác định độ trễ 𝑞𝑞 từ giản đồ tự tương quan: AFC sẽ có xu hướng khác 0 một cách có ý nghĩa thống kê cho đến độ trễ 𝑞𝑞 và sẽ bằng 0 ngay sau độ trễ 𝑞𝑞 đó PACF sẽ có xu hướng bằng 0 ngay lập tức

Trang 23

d7ab8e b82e b25 f771a 671e2 2eac3a57c81ccf10fbf2d5a d39c42dd8acfcf3e7 4 a3b2006 1742 0fc1db577 d1b1e 93fbdd0ab7 1b01 01f9f1 e124 c788 9b01 4208 558 53cf07 f646 b8c7339 c9bc5 c2a893 9633 c98 d993 4af9e 93a61a 3f7 58e77 bf2 8ae 1e13c27bbdbb623 39b4a 6c1a 92ab4 b087 b9 f43e1 9cbdd2ef1 8735 b0a4e2 6a80 f 4b5bc6a22 5fdff0 41df597 5d8 7500 b5865a d81 f6 f4d0 cb27cf3 f1b3 bbcf5a 9e7 325654e 7f4 d3a0 0975 d005a7 b55 0ef9 8d3 b3b7 e6a628 2e6e3 c0a4 2567 faa9c1c

049647 51b2 64f206 c364 bd75 9c1 31d9 64a9fdd5 2ab2a8 3f0 8075 e9f4714 f777 3 7e6c0 572a75 8f0 0c0 7a568e 4eb5 bc2b5 be222 3a3b9 f6 c0e1 1c56 d0 f87d13b5 04 c7952 d3 c8baa0 9c2a 1c4 c631 3e5 f1c1471 f3a72 7a695 064ca 57e6 d7b65b0 57b9 cfed 7dd2ab0 d8e55 82df302 29a2b9eb3 f47 bb0 b317a 5b0 67abf16dc1 d1465 8d4 6c0c3e2bb9d54fb002 ebc95b823a11a b1 c12d09d4 d76a8 e2c083 cc4e fee4e f12 4a49356 cd1 504 b41ac6b5 09f5a55d7d1e 0f7 34bd01b9f9 b418 306b079aa1 4b58 76c8 c235 4c6 d472 b9ba 67e47 c60a 45fe 16681 e6ab5 fc709e3 42c7d0fbd3a5df7 d15bea d4fc82e c67 40f6981 520a4 c275 1ef9 c52 e2ff5a7d195a4 76e05 fe65 012 bd4 c4bb166 f2f402e 7b7 f5d4 1a62 f16ae b3c4b79 2eb d8404a 58fb7 c62 f4a3d0d e408373 6a892 76022 74e7 0c3 7d9d50ee0 258e 23c4 44e8 1ee032 d32 c44 b595e bf 8b9e5 f7e1 78ef067da 3bc8ed 3c5 bfcfde 88109 87c4baaab25b5 f5 b2f3c7 f34e 7 1b3cfe83 06969 dcd424fb6 05c081bd42 b333 9a88e0 f93 b11ff4 6486a bec9 8e8d

ở bên cho thấy mô hình MA(2)

là thích hợp

MÔ HÌNH TRUNG BÌNH DI ĐỘNG – MA (tt)

Ngày đăng: 10/01/2024, 00:23

HÌNH ẢNH LIÊN QUAN

Hình bên là ví dụ  minh họa cho một  chuỗi dừng với - Bài giảng Phân tích dữ liệu và dự báo: Chương 4  Trường ĐH Quy Nhơn
Hình b ên là ví dụ minh họa cho một chuỗi dừng với (Trang 6)
Hình bên là ví dụ  minh họa cho một  chuỗi không dừng  khi trung bình - Bài giảng Phân tích dữ liệu và dự báo: Chương 4  Trường ĐH Quy Nhơn
Hình b ên là ví dụ minh họa cho một chuỗi không dừng khi trung bình (Trang 7)
Hình bên là ví dụ  minh họa cho một  chuỗi không dừng  khi cả trung bình - Bài giảng Phân tích dữ liệu và dự báo: Chương 4  Trường ĐH Quy Nhơn
Hình b ên là ví dụ minh họa cho một chuỗi không dừng khi cả trung bình (Trang 8)
Bảng bên - Bài giảng Phân tích dữ liệu và dự báo: Chương 4  Trường ĐH Quy Nhơn
Bảng b ên (Trang 21)
Bảng bên là  kết quả ước  lượng mô  hình MA(2) - Bài giảng Phân tích dữ liệu và dự báo: Chương 4  Trường ĐH Quy Nhơn
Bảng b ên là kết quả ước lượng mô hình MA(2) (Trang 24)
Hình bên là  giản đồ  tương quan  của chuỗi gốc - Bài giảng Phân tích dữ liệu và dự báo: Chương 4  Trường ĐH Quy Nhơn
Hình b ên là giản đồ tương quan của chuỗi gốc (Trang 34)
Hình bên là  giản đồ  tương quan  của chuỗi sai  phân bậc  nhất của  chuỗi GDP  (dGDP) - Bài giảng Phân tích dữ liệu và dự báo: Chương 4  Trường ĐH Quy Nhơn
Hình b ên là giản đồ tương quan của chuỗi sai phân bậc nhất của chuỗi GDP (dGDP) (Trang 37)

🧩 Sản phẩm bạn có thể quan tâm

w