1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo hóa học: " QUADRATIC OPTIMIZATION OF FIXED POINTS FOR A FAMILY OF NONEXPANSIVE MAPPINGS IN HILBERT SPACE" pot

13 239 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 530 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

RHOADES Received 10 September 2003 Given a finite family of nonexpansive self-mappings of a Hilbert space, a particular qua-dratic functional, and a strongly positive selfadjoint bounded

Trang 1

FOR A FAMILY OF NONEXPANSIVE MAPPINGS

IN HILBERT SPACE

B E RHOADES

Received 10 September 2003

Given a finite family of nonexpansive self-mappings of a Hilbert space, a particular qua-dratic functional, and a strongly positive selfadjoint bounded linear operator, Yamada

et al defined an iteration scheme which converges to the unique minimizer of the qua-dratic functional over the common fixed point set of the mappings In order to obtain their result, they needed to assume that the maps satisfy a commutative type condition

In this paper, we establish their conclusion without the assumption of any type of com-mutativity

Finding an optimal point in the intersectionF of the fixed point sets of a family of

nonexpansive maps is one that occurs frequently in various areas of mathematical sci-ences and engineering For example, the well-known convex feasibility problem reduces

to finding a point in the intersection of the fixed point sets of a family of nonexpan-sive maps (See, e.g., [3,4].) The problem of finding an optimal point that minimizes a given cost functionΘ : ᏴRoverF is of wide interdisciplinary interest and practical

importance (See, e.g., [2,4,5,7,14].) A simple algorithmic solution to the problem of minimizing a quadratic function overF is of extreme value in many applications

includ-ing the set-theoretic signal estimation (See, e.g., [5,6,10,14].) The best approximation problem of finding the projectionP F(a) (in the norm induced by the inner product of Ᏼ) from any given point a in Ᏼ is the simplest case of our problem Some papers dealing

with this best approximation problem are [2,9,11]

LetᏴ be a Hilbert space, C a closed convex subset of Ᏼ, and T i, wherei =1, 2, ,N,

a finite family of nonexpansive self-maps ofC, with F : = ∩ n i =1Fix(T i)= ∅ Define a qua-dratic functionΘ : ᏴRby

Θ(u) : =1

whereb ∈ Ᏼ and A is a selfadjoint strongly positive operator We will also assume that

B : = I − A satisfies B < 1, although this is not restrictive, since µA is strongly positive

Copyright©2004 Hindawi Publishing Corporation

Fixed Point Theory and Applications 2004:2 (2004) 135–147

2000 Mathematics Subject Classification: 47H10

URL: http://dx.doi.org/10.1155/S1687182004309046

Trang 2

with I − µA < 1 for any µ ∈(0, 2/ A ), and minimizingΘ(u): =(1/2)  µAu,u  −  µb,u 

overF is equivalent to the original minimization problem.

Yamada et al [13] show that there exists a unique minimizeru ∗of Θ over C if and

only ifu ∗satisfies



Au ∗ − b,u − u ∗

In their solution of this problem, Yamada et al [13] add the restriction that theT i

satisfy

Fix

T N ··· T1



=Fix

T1T N ··· T3T2



=Fix

T N −1T N −2··· T1T N

There are many nonexpansive maps, with a common fixed point set, that do not satisfy (3) For example, ifX =[0, 1] andT1andT2are defined byT1x = x/2 + 1/4 and T2x =

3x/4, then Fix(T1,T2)= {2/5 }, whereas Fix(T2,T1)= {3/10 }

In our solution, we are able to remove restriction (3) We will take advantage of the modified Wittmann iteration scheme developed by Atsushiba and Takahashi [1] Letα n1,α n2, ,α nN ∈(0, 1], n =1, 2, Given the mappings T1,T2, ,T N, one can define, for eachn, new mappings U1, ,U Nby

U n1 = α n1 T1+

1− α n1

I,

U n2 = α n2 T2U n1+

1− α n2

I,

U n,N −1 = α n,N −1T N −1U n,N −2+

1− α n,N −1



I,

W n:= U nN = α nN T N U n,N −1+

1− α nN

I.

(4)

From [1, Lemmas 3.1 and 3.2], if theT iare nonexpansive, so are theU ni, and both sets

of functions have the same fixed point set

The iteration scheme we will use is the following Letb ∈ C and choose any u0∈ C.

Define{ u n }by

u n+1 = λ n b +I − λ n AW n u n, (5)

where theW nare the self-maps ofC generated by (4)

Theorem 1 Let T i:Ᏼ→ Ᏼ (i =1, ,N) be nonexpansive with nonempty common fixed point set F = ∅ Assume that { λ n } and { α ni } satisfy

(i) 0≤ λ n ≤ 1,

(ii) limλ n = 0,

(iii)

n ≥1λ n = ∞ ,

Trang 3

n ≥1| λ n − λ n −1| < ∞ ,

(v)

n ≥1| α ni − α n −1,i | < ∞ for each i =1, 2, ,N.

Then, for any point u0∈ Ᏼ, the sequence { u n } generated by ( 5 ) converges strongly to the unique minimizer u ∗ of the function Θ of ( 1 ) over F.

Proof From [15],u ∗exists and is unique We will first assume that

u0∈ C u ∗:=



x ∈|x − u ∗  ≤b − Au ∗

1− B

whereA and B are as previously defined.

For anyx ∈Ᏼ and 0≤ λ ≤1, define

Then, for anyy ∈ Ᏼ, since W is nonexpansive,

T λ(x) − T λ(y) = (I − λA)W(x) − W(y) 1− λ1− B  x − y (8) Also, sinceu ∗ ∈ F,

T λ

u ∗

Thus,

T λ(x) − u ∗  ≤ T λ(x) − T λ

u ∗+T λ

u ∗

− u ∗

1− λ1− B  x − u ∗+λ

1− B b − Au ∗

1− B

x − Au ∗

1− B

(10)

If, in (7), we make the substitutionλ = λ n,T λ(x) = u n+1, andW(x) = W n u n, then it follows from (9) and (10) thatu nandW n u nbelong toC u ∗ for eachn Thus, { u n }and

{ W n u n }are bounded Since B < 1, { BW n u n }is also bounded

LetK denote the diameter of C u ∗

We may write (5) in the form

u n+1 = λ n b +I − λ n(I − B)W n u n

= λ n b +I − λ n

We will first show that

limu n+1 − u n  =0. (12)

Trang 4

Using (11), since eachW nis nonexpansive and B < 1,

u n+1 − u n

=λ n b +

1− λ n

W n u n+λ n BW n u n − λ n −1b

1− λ n −1



W n −1u n −1− λ n −1BW n −1u n −1 

λ n − λ n −1 b +

1− λ nW n u n − W n −1u n

+ λ n − λ n −1 W n −1u n −1+

1− λ nW n −1u n − W n −1u n −1

+λ n B W n u n − W n −1u n+λ n B W n −1u n − W n −1u n −1

+ λ n − λ n −1 BW n −1u n −1

3 λ n − λ n −1 K +

1− λ n+λ n B 

× W n u n − W n −1u n+

1− λ n+λ n B W n −1u n − W n −1u n −1 .

(13)

From (4), sinceT NandU n −1,N −1are nonexpansive,

W n u n − W n −1u n

=α nN T N U n,N −1u n+

1− α nN

u n − α n −1,N T N U n −1,N −1u n −1− α n −1,N

u n

α nN − α n −1,N u n+α nN T N U n,N −1u n − α n −1,N T N U n −1,N −1u n

α nN − α n −1,N u n+α nN

T N U n,N −1u n − T N U n −1,N −1u n

+ α nN − α n −1,N T N U n −1,N −1u n

α nN − α n −1,N u n+α nNU n,N −1u n − U n −1,N −1u n+ α nN − α n −1,N K

2K α nN − α n −1,N +α nNU n,N −1u n − U n −1,N −1u n.

(14)

Again, from (4),

U n,N −1u n − U n −1,N −1u n

=α n,N −1T N −1U n,N −2u n+

1− α n,N −1



u n

− α n −1,N −1T N −1U n −1,N −2u n −1− α n −1,N −1u n

α n,N −1− α n −1,N −1 u n

+α n,N −1T N −1U n,N −2u n − α n −1,N −1T N −1U n −1,N −2u n

α n,N −1− α n −1,N −1 u n

+α n,N −1 T N −1U n,N −2u n − T N −1U n −1,N −2u n

+ α n,N −1− α n −1,N −1 K

2K α n,N −1− α n −1,N −1 +α n,N −1U n,N −2u n − U n −1,N −2u n

2K α n,N −1− α n −1,N −1 +U n,N −2u n − U n −1,N −2u n.

(15)

Trang 5

U n,N −1u n − U n −1,N −1u n

2K α n,N −1− α n −1,N −1 + 2K α n,N −2− α n −1,N −2

+U n,N −3u n − U n −1,N −3u n

2K N −1

i =2

α ni − α n −1,i +U n1 u n − U n −1,1u n

=α n1 T1u n+

1− α n1

u n − α n −1,1T1u n −1− α n −1,1



u n

+ 2K N −

1

i =2

α ni − α n −1,i

α n1 − α n −1,1 u n+α n1 T1u n − α n −1,1T1u n

+ 2K N −1

i =2

α ni − α n −1,i

2K N −

1

i =1

α ni − α n −1,i .

(16)

Substituting (16) into (14),

W n u n − W n −1u n  ≤2K α nN − α n −1,N + 2α nN K N −1

i =1

α ni − α n −1,i

2K N

i =1

Using (17) in (13),

u n+1 − u n  ≤ 1− λ n

1− B u n − u n −1+ 3K λ n − λ n −1 + 2

1− λ n

1− B K N

i =1

α ni − α n −1,i . (18) Thus, since 0< 1 − λ n(1− B )< 1 for all n,

u n+m+1 − u n+m  ≤ n+m

i = m



1− λ i

1− B u i+1 − u i

+ 3K

n+m

i = m

λ i − λ i −1 + 2K n+m

i = m

N

j =1

α ij − α i −1,j . (19)

Trang 6

From (iii), since the product diverges to zero,

lim sup

n

u n+1 − u n  =lim sup

n

u n+m+1 − u m+n

2K ∞

i = m

λ i − λ i −1 + 2K ∞

i = m

N

j =1

α ij − α i −1,j . (20) Therefore, taking the lim supmof both sides and using (iv) and (v),

lim sup

n

and (12) is satisfied

Now, for any nonexpansive self-mapT of C u ∗, defineG t:C u ∗ → C u ∗ by

G t(x) = tb + (1 − t)TG t(x) + tBTG t(x) (22) for eacht ∈(0, 1] Using an argument similar to the proof of [8, Theorem 12.2, page 45], we will now show that ifT has a fixed point, then, for each x in C u ∗, the strong limitt →0G t(x) exists and is a fixed point of T.

Definey(t) = G t(x) and let w be a fixed point of T:

y(t) − w = t(b − w) + (1 − t)T y(t) − w+tBT y(t). (23) SinceT is nonexpansive,

y(t) − w ≤ t b − w + (1− t)T y(t) − w+t B T y(t)

≤ t b − w + (1− t)y(t) − w+t B T y(t),

ty(t) − w ≤ t b − w +t B T y(t) − w+t B w , (24) or

y(t) − w ≤ b − w + B y(t) − w+ B w , (25) which, since B < 1, yields

y(t) − w ≤ 1

1− B b − w + B w , (26) andy(t) remains bounded as t →0

Also,

BT y(t)<T y(t) ≤ T y(t) − Tw+ w ≤y(t) − w+ w , (27) and bothBT y(t) and T y(t) remain bounded as t →0

Hence,

y(t) − T y(t) = tb − T y(t) + BT y(t) −→0 ast −→0. (28)

Trang 7

Definey n = y(t n) and lett n →0 Letµ nbe a Banach limit and f : C u ∗ →R+defined by

f (z) = µ n

y n − z 2 

Since f is continuous and convex, f (z) → ∞as z → ∞ SinceᏴ is reflexive, f attains

it infimum overC u ∗

LetM be the set of minimizers of f over C u ∗ Ifu ∈ C u ∗, then

f (Tu) = µ n

y n − Tu 2 

= µ n

T y n − Tu 2 

≤ µ n

y n − u 2 

= f (u). (30) Therefore,M is invariant under T Since it is also bounded, closed, and convex, it must

contain a fixed point ofT Denote this fixed point by v Then,



y n − T y n,y n − v=y n − v, y n − v+

v − T y n,y n − v

=y n − v 2

+

Tv − T y n,y n − v. (31)

But

Tv − T y n,y n − v ≤ Tv − T y ny n − v ≤ y n − v 2

so that



Since

y n = t n b +1− t n

T y n+t n BT y n,

y n − b =1− t n

T y n − b+t n BT y n

=1− t n

T y n − y n

+

1− t n

y n − b+t n BT y n,

(34)

thus,

ty n − b=1− t n

T y n − y n

or

y n − b − Bv =1− t n

t n



T y n − y n

Therefore, from (33),



y n − b − Bv, y n − v

=1− t n

t n



T y n − y n,y n − v+

BT y n − Bv, y n − v

BT y n − Bv, y n − v.

(37)

Trang 8

For anyz ∈ C u ∗,

y n − v 2

=y n −

1− t n

v − t n z + t n(z − v) − t n b − t n Bv + t n(b + Bv) 2

y n −

1− t n

v − t n b − t n Bv 2

+ 2t n

z − v + b + Bv, y n −1− t n

v − t n z − t n b − t n Bv.

(38)

Let > 0 be given Since Ᏼ is uniformly smooth, there exists a t0> 0 such that, for all

t n ≤ t0,

z − v + b + Bv,

y n − vy n −1− t n

v − t n z − t n b − t n Bv <  . (39) Thus, from (38),



z − v + b + Bv, y n − v

< +

z − v + b + Bv, y n −1− t n

v − t n z − t n b − t n B

< + 1

2t



y n − v 2

y n −

1− t n

v − t n b − t n Bv 2 

.

(40)

Since the Gateaux derivative exists inᏴ, we obtain

µ n

Settingz = θ in (41) and adding (37) and (41) yields

µ n

y n − v, y n − v≤ µ n

or

µ n

y n − v 2 

≤ µ nBT y n − Bvy n − v

≤ µ n

B T y n − Tvy n − v

≤ B µ n

y n − v 2 

.

(43)

Therefore,µ n y n − v 2=0 Thus, there is a subsequence of{ y n }converging strongly

tov Suppose that lim k →∞ y(t n k)= v1and limk →∞ y(t m k)= v2 From (37), we have



v1− b − Bv2,v1− v2 

BTv1− Bv2,v1− v2 

,



v2− b − Bv1,v2− v1



BTv2− Bv1,v2− v1



Adding these inequalitites, we obtain



v1− BTv1+BTv2− v2,v1− v2



or



v1− v2,v1− v2



BTv1− BTv2,v1− v2



Trang 9

that is,

v1− v2 2

BTv2− BTv1v1− v2

≤ B Tv2− Tv1v1− v2

≤ B v2− v1 2

,

(47)

which, since B < 1, implies that v1= v2, and thus limy n = v.

Now, settingz = θ in (41), we obtain

µ n

or

µ n

which, from (2), implies thatv = u ∗

Letu nkdenote the unique element ofC u ∗such that

u nk =1k b+



11k



W n u nk+1

From what we have just proved, limk u nk → u ∗ Using (11),

u n+1 − W n+1 u n+1,k

=λ n b +

1− λ n+λ n BW n u n − W n+1 u n+1,k

≤ λ nb − W n+1 u n+1,k+

1− λ nW n u n − W n+1 u n+1,k

+λ n B W n u n − W n+1 u n+1,k+λ nBW n+1 u n+1,k

< 3Kλ n+

1− λ n+λ n B W n u n − W n u nk+W n u nk − W n u n+1,k

+W n u n+1,k − W n+1 u n+1,k

3Kλ n+

1− λ n+λ n B u n − u nk+u nk − u n+1,k

+W n u n+1,k − W n+1 u n+1,k .

(51)

As in (17),

W n u n+1,k − W n+1 u n+1,k  ≤2K N

i =1

α n+1,i − α ni . (52) From the definition ofu nk,

u nk =1

k b+



11

k



W n u nk+1

k BW n u nk,

u n+1,k =1k b+



11k



W n+1 u n+1,k+1

k BW n+1 u n+1,k,

u n+1,k − u nk =



11

k



W n+1 u n+1,k − W n u nk

+1

k B



W n+1 u n+1,k − W n u nk

.

(53)

Trang 10

Therefore, sinceW n+1is nonexpansive,

u n+1,k − u nk  ≤11k+1k B



W n+1 u n+1,k − W n u nk

11

k+

1

k B W n+1 u n+1,k − W n+1 u nk+W n+1 u nk − W n u nk



11k+

1

k B u n+1,k − u nk+W n+1 u nk − W n u nk .

(54) Thus, using (17),



1− B 

k u n+1,k − u nk  ≤k −1 + B 

N

i =1

α n+1,i − α n,i (55) or

u n+1,k − u nk  ≤k −1 + B 

1− B 2K N

i =1

α n+1,i − α n,i . (56)

Substituting (56) and (52) into (51) yields

u n+1 − W n+1 u n+1,k

3Kλ n+

1− λ n+λ n B u n − u nk+ k

1− B



2K N

i =1

α n+1,i − α n,i . (57) Thus, using (iii) and (v), we have

µ n

u n − W n u nk 2 

= µ n

u n+1 − W n+1 u n+1,k 2 

≤ µ n

u n − u nk 2 

From (53),

u nk − u n =1

k



b − u n +



11

k



W n u nk − u n

+1

Hence,



1− k1



u n − W n u nk

= u n − u nk −1k



u n − b+1



11

k

 2

u n − W n u nk 2

u n − u nk 2

2

k



u n − b − BW n u nk,u n − u nk

=



12k



u n − u nk 2

2k



u nk − b − BW n u nk,u n − u nk

.

(61)

Trang 11

Therefore, using (58) and (61),



11k

 2

µ nu n − u nk 2



1− k1

 2

µ nu n − W n u nk 2



1− k2



µ nu n − u nk 2

2

k µ n



u nk − b − BW n u nk,u n − u nk

,

(62)

which implies that

1

2k µ n



u n − u nk 2 

≥ µ n

b − u nk+BW n u nk,u n − u nk

Since limk u nk → u ∗, independent ofn, it follows that

0≥ µ n

b − u ∗+Bu ∗,u n − u ∗

= µ n

b −(I − B)u ∗,u n − u ∗

= µ n

b − Au ∗,u n − u ∗

.

(64)

From (12),

lim b − u ∗,u n+1 − u ∗

b − u ∗,u n − u ∗  =0. (65)

We need the following result from [12] IfA is a real number and { a1,a2, } ∈  ∞such thatµ n { a n } ≤ a for all Banach limits µ nand lim supn(a n+1 − a n)0, then lim supn a n ≤ a.

Consequently,

lim sup

n



b − u ∗,u n − u ∗

Sinceu ∗ ∈ F,

W n u n − u ∗  = W n u n − W n u ∗  ≤ u n − u ∗. (67) From (11),

u n+1 − u ∗ = λ n

b − u ∗ +

1− λ n

W n u n − u ∗

+λ n BW n u n

= λ n

b − u ∗ +

1− λ n+λ n BW n u n − u ∗

+λ n Bu ∗ (68) or



1− λ n+λ n BW n u n − u ∗

= u n+1 − u ∗ − λ n

b − u ∗

− λ n Bu ∗ (69) Therefore,



1− λ n+λ n B 2W n u n − u ∗ 2

u n+1 − u ∗ 2

2λ n

b − u ∗+Bu ∗,u n+1 − u ∗

, (70)

Trang 12

which implies that

u n+1 − u ∗ 2

1− λ n+λ n B 2W n u n − u ∗ 2

+ 2λ n

b − u ∗,u n+1 − u ∗ + 2λ n

Bu ∗,u n+1 − u ∗

From (ii) and the boundedness ofC u ∗, there exists a positive integerN such that, for

alln ≥ N,

λ n

b − u ∗,u n+1 − u ∗

≤ 

4, λ n

Bu ∗,u n+1 − u ∗

≤ 

Therefore, forn ≥ N,

u n+1 − u ∗ 2

1− λ n+λ n B 2u n − u ∗ 2

+

2+



2,

u n+m − u ∗ 2

n+m1

i = m



1− λ i+λ i B 2



u m − u ∗ 2

+

n+m1

i = m



1− λ i+λ i B 

 2

.

(73)

Using (iii),

lim sup

n

u n − u ∗ 2

=lim sup

n

u n+m − u ∗ 2

Thus,{ u n }converges strongly tou ∗

Now letu0Ᏼ Let{ s n }be another sequence generated by (11) for somes0∈ C u ∗ Then, by what we have just proved, lims n = u ∗ SinceW nis nonexpansive for eachn,

u n+1 − s n+1  = λ n b +1− λ n AW n u n − λ n b −1− λ n AW n s n

1− λ n A

W n u n − W n s n

1− λ n+λ n B W n u n − W n s n

1− λ n+λ n B u n − s n.

(75)

By induction,

u n − s n  ≤ u0− s0  n

k =1



1− λ k

1− B . (76)

Therefore, using (iii), lim u n − s n =0 and u n − u ∗ ≤ u n − s n + s n − u ∗ so that

... n+

1− α nN

u n − α n −1,N T N... −1u n − T N U n −1,N −1u n

+... −1,N −1T N −1U n −1,N −2u

Ngày đăng: 23/06/2014, 00:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm