1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo hóa học: "PARAMETRIC PROBLEM OF COMPLETELY GENERALIZED QUASI-VARIATIONAL INEQUALITIES" pptx

12 217 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 539,7 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

SIDDIQI Received 29 August 2004; Revised 27 January 2005; Accepted 29 June 2005 This paper is devoted to the study of behaviour and sensitivity analysis of the solution for a class of pa

Trang 1

QUASI-VARIATIONAL INEQUALITIES

SALAHUDDIN, M K AHMAD, AND A H SIDDIQI

Received 29 August 2004; Revised 27 January 2005; Accepted 29 June 2005

This paper is devoted to the study of behaviour and sensitivity analysis of the solution for

a class of parametric problem of completely generalized quasi-variational inequalities Copyright © 2006 Salahuddin et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

1 Introduction

Sensitivity analysis of solutions for variational inequalities with single-valued mappings has been studied by many authors with different techniques in finite dimensional spaces and Hilbert spaces [3,4,7,11,14] Robinson [10] has dealt with the sensitivity analysis

of solutions for the classical variational inequalities over polyhedral convex sets in finite dimensional spaces

In this paper, we study the behaviour and sensitivity analysis of solutions for a class

of parametric problem of completely generalized quasi-variational inequalities with set-valued mappings without the differentiability assumptions

2 Preliminaries

LetH be a real Hilbert space with  x 2=  x, x , 2 Hthe family of all nonempty bounded subsets ofH and C(H) the family of all nonempty compact subsets of H Let δ : 2 H →

[0,∞) be defined by

δ(A, B) =sup

 a − b :a ∈ A, b ∈ B

, ∀ A, B ∈2H, (2.1) and letH : C(H) [0,∞) be defined by



H(A, B) =max



sup

x ∈ A

d(x, B), sup

y ∈ B d(A, y)



Hindawi Publishing Corporation

Journal of Inequalities and Applications

Volume 2006, Article ID 86869, Pages 1 12

DOI 10.1155/JIA/2006/86869

Trang 2

d(x, B) =inf

Then, (2H,δ) and (C(H), H) are complete metric spaces, H is the Hausdor ff metric on

C(H).

We now consider the parametric problem of completely generalized quasi-variational inequalities LetΩ be a nonempty open subset of H in which the parameter λ takes

val-ues andK : H ×Ω2H set-valued mapping with nonempty closed convex valued Let

A, R, T : H ×Ω2H be the set-valued mappings and p, f , g, G : H ×Ω→ H the

single-valued mappings For each fixedλ ∈ Ω, we write Gλ( x) = G(x, λ), u λ( x) = u(x, λ) unless

otherwise specified The parametric problem of completely generalized quasi-variational inequality (PPCGQVI) consists in findingx ∈ H, u λ( x) ∈ A λ( x), w λ( x) ∈ R λ( x), z λ( x) ∈

T λ( x) such that G λ( x) ∈ K λ( x) and



p λ

u λ( x)

f λ

w λ( x)

− g λ

z λ( x)

,y − G λ( x) ≥0, ∀ y ∈ K λ( x). (2.4)

In many important applications,K λ( x) has the form

K λ( x) = m(x) + K λ, ∀( x, λ) ∈ H ×Ω, (2.5) wherem : H → H and { K λ:λ ∈Ω}is a family of nonempty closed and convex subsets of

H, see, for example, [13] and the references therein

For eachλ ∈ Ω, let S(λ) denote the set of solutions to the problem (2.4) For some

λ ∈ Ω, we fix those conditions under which for each λ in a neighborhood (say N(λ)) of

λ, problem (2.4) has a nonempty solution set, that is,S(λ) nearS( λ) and the

set-valued mappingsS(λ) is continuous or Lipschitz continuous under the metric δ or H.

We need the following concepts and results

Lemma 2.1 [5] For each x, v ∈ H,

if and only if

where P K(v) is the projection of v ∈ H onto K.

Lemma 2.2 [9] Let m : H → H be a single-valued mapping and

Then

P K(x)( y) = m(x) + P K

y − m(x)

Definition 2.3 [12] A single-valued mappingG : H ×Ω→ H is called:

(i)α-strongly monotone if there exists a constant α > 0 such that



G λ(x) − G λ(y), x − y ≥ α  x − y 2, ∀( x, y, λ) ∈ H × H ×Ω; (2.10)

Trang 3

(ii)β- Lipschitz continuous if there exists a constant β > 0 such that

G λ( x) − G λ( y) ≤ β  x − y , ∀( x, y, λ) ∈ H × H × Ω. (2.11)

Definition 2.4 [1] A set-valued mappingR : H ×Ω2His said to be

(i) relaxed Lipschitz with respect to a mapping f : H ×Ω→ H if there exists a constant

r ≥0 such that



f λ

w λ( x)

− f λ

w λ( y)

,x − y ≤ − r  x − y 2,

∀( x, y, λ) ∈ H × H × Ω, wλ( x) ∈ R λ( x), w λ( y) ∈ R λ( y); (2.12) (ii) relaxed monotone with respect to a mapping g : H ×Ω→ H if there exists a constant

s > 0 such that



g λ

w λ( x)

− g λ

w λ( y)

,x − y ≥ − s  x − y 2,

∀( x, y, λ) ∈ H × H × Ω, wλ( x) ∈ R λ( x), w λ( y) ∈ R λ( y). (2.13) Definition 2.5 [2] A set-valued mappingA : H ×Ω2H [A : H ×Ω→ C(H)] is said to

beη-δ-Lipschitz [η- H-Lipschitz ] continuous if there exists a constant η 0 such that

δ

A λ(x), A λ(y)

≤ η  x − y , ∀( x, y, λ) ∈ H × H ×Ω,



H

A λ( x), A λ( y)

≤ η  x − y , ∀( x, y, λ) ∈ H × H × Ω. (2.14) Lemma 2.6 Let K λ( x) be defined as ( 2.5 ) Then for each fixed λ ∈ Ω, problem (2.4 ) has a solution (x( λ), u λ(x( λ)), w λ(x( λ)), z λ(x( λ))) if and only if x = x( λ) is a fixed point of the set-valued mapping φ : H ×Ω2H defined by

u λ(x) ∈ A λ(x), w λ(x) ∈ R λ(x), z λ(x) ∈ T λ(x)

x − G λ( x) + m(x)

+P K λ

G λ( x) − ρ

p λ

u λ( x)

f λ

w λ( x)

− g λ

z λ( x)

− m(x)

, (2.15)

for each x ∈ H, where λ = λ, ρ > 0 is some constant and P K λ(v) is the projection of v ∈ H onto K λ

Proof For any fixed λ ∈ Ω , let (x,u λ(x), w λ(x), z λ(x)) be a solution of problem (2.4) Thenx ∈ H, u λ(x) ∈ A λ(x), w λ(x) ∈ R λ(x) and z λ(x) ∈ T λ(x) such that G λ(x) ∈ K λ(x)

and



p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x)

,y − G λ(x)

0, ∀ y ∈ K λ(x). (2.16) Hence for anyρ > 0,



G λ(x) −G λ(x) − ρ

p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x) 

,y − G λ(x)

0, ∀ y ∈ K λ(x). (2.17)

Trang 4

From Lemmas2.1and2.2, we have

G λ(x) = P K λ(x)



G λ(x) − ρ

p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x) 

= m(x) + P K λ

G λ(x) − ρ

p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x)

− m(x)

. (2.18)

We can also write

x = x − G λ(x) + m(x)

+P K λ

G λ(x) − ρ

p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x)

− m(x)

u λ(x) ∈ A λ(x), w λ(x) ∈ R λ(x), z λ(x) ∈ T λ(x)

x − G λ(x) + m(x)

+P K λ

G λ(x) − ρ

p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x)

− m(x)

= φ λ(x),

(2.19)

that is,x = x( λ) is a fixed point of φ λ(x).

Now, for any fixedλ ∈ Ω, let x(λ) be a fixed point of φ λ(x) ByLemma 2.1there exist

u λ(x) ∈ A λ(x), w λ(x) ∈ R λ(x) and z λ(x) ∈ T λ(x) such that

G λ(x) = m(x) + P K λ

G λ(x) − ρ

p λ

u λ(x)

f λ

w λ (x)

− g λ

z λ(x)

− m(x)

= P K λ(x)



G λ(x) − ρ

p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x) 

.

(2.20)

Hence, we haveG λ(x) ∈ K λ(x) and



G λ(x) −G λ(x) − ρ

p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x) 

,y − G λ(x)

0, (2.21)

for ally ∈ K λ(x).

Noting thatρ > 0, we have



p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x)

,y − G λ(x)

0, ∀ y ∈ K λ(x), (2.22)

that is, (x, u λ(x), w λ(x), z λ(x)) is a solution of the problem (2.4) 

Lemma 2.7 Let K λ( x) be defined as ( 2.5 ), A, R, T : H ×Ω2H the δ-Lipschitz continuous with respect to constants η, γ, ν, respectively, and p, f ,g,G : H ×Ω→ H the Lipschitz con-tinuous with respect to the constants ξ, χ, σ and β, respectively Let G be strongly monotone with constant α > 0, R relaxed Lipschitz continuous with respect to f with constant r ≥0,T

Trang 5

relaxed monotone with respect to g with constant s > 0, and m : H → H is μ-Lipschitz con-tinuous If there exists a constant ρ > 0 such that



ρ −( − s) + ξη(q −1)

γχ + σ ν 2

ξη 2



<



( − s) + ξη(q −1) 2

− q(q −1)

(γχ + σ ν)2(ξη)2



γχ + σ ν 2

ξη 2

( − s) > (1 − q)ξη +

q(q −1)

(γχ + σ ν)2(ξη)2

ρξη < γχ + σ ν,

q =2

μ +

12α + β2

< 1,

(2.23)

then the set-valued mapping φ : H ×Ω2H defined by ( 2.15 ) is a uniform θ-δ-set-valued contraction with respect to λ ∈ Ω, where

θ = q + t(ρ) + ρξη < 1, t(ρ) =12ρ(r − s) + ρ2(γχ + σ ν)2. (2.24)

Proof By the definition of φ, for any x, y ∈ H, λ ∈ Ω, a ∈ φ λ( x) and b ∈ φ λ( y), there

existu λ( x) ∈ A λ( x), u λ( y) ∈ A λ( y), w λ( x) ∈ R λ( x), w λ( y) ∈ R λ( y), z λ( x) ∈ T λ( x) and

z λ(y) ∈ T λ(y) such that

a = x − G λ(x) + m(x) + P K λ

G λ(x) − ρ

p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x)

− m(x)

,

b = y − G λ( y) + m(y) + P K λ



G λ( y) − ρ

p λ



u λ( y)

f λ



w λ( y)

− g λ



z λ( y)

− m(y)

.

(2.25) Since projection operator is nonexpansive, we have

 a − b  ≤2 x − y −

G λ( x) − G λ( y) + 2 m(x) − m(y)

+ x − y + ρ

f λ

w λ(y)

− f λ

w λ(y)

− ρ

g λ

z λ(x)

− g λ

z λ(y)

+ρ p λ

u λ( x)

− p λ



SinceG is strongly monotone and Lipschitz continuous, we have

x − y −

G λ(x) − G λ(y) 2

12α + β2

 x − y 2,

m(x) − m(y) ≤ μ  x − y ,

p λ

μ λ( x)

− p λ

u λ( y) ≤ ξ u λ( x) − u λ( y) ≤ ξδ

A λ( x), A λ( y)

≤ ξη  x − y 

(2.27)

Trang 6

x − y + ρ

f λ

w λ( x)

− f λ

w λ( y)

− ρ

g λ

z λ( x)

− g λ

z λ( y) 2

=  x − y 2+ 2ρ

f λ

w λ( x)

− f λ

w λ( y)

,x − y −2 

g λ

z λ( x)

− g λ

z λ( y)

,x − y

+ρ2 f λ

w λ( x)

− f λ

w λ( y)

g λ

z λ( x)

− g λ

z λ( y) 2

12ρ(r − s) + ρ2(γχ + σν)2 

 x − y 2.

(2.28) From (2.26)–(2.28), we have

 a − b  ≤q + t(ρ) + ρξη

 x − y  ≤ θ  x − y , (2.29) where

θ = q + t(ρ) + ρξη, t(ρ) =12ρ(r − s) + ρ2(γχ + ρν)2,

q =2

μ +

12α + β2 

.

(2.30)

By the arbitrariness ofa and b, we have

δ

φ λ(x), φ λ(y)

By conditions (2.23) and (2.24), we haveθ < 1 This proves that θ is a uniform

Lemma 2.8 [6] Let X be a complete metric space and T1,T2:X → C(X) be θ- H-contraction

mapping Then



H

F

T1

,F

T2

 1

1− θ



sup

x ∈ X



H

T1(x), T2(x)

where F(T1) and F(T2) are the sets of fixed points of T1and T2, respectively.

3 Sensitivity analysis

Theorem 3.1 Assume that A λ( x), R λ( x) and T λ( x) are δ-Lipschitz continuous at λ Let

R λ( x) be the relaxed Lipschitz continuous with f λ(·) at λ, and T λ( x) the relaxed monotone with g λ(·) at λ Suppose that G λ( x), p λ(·), f λ(·), g λ(·) and P K λ(v) are Lipschitz continuous

at λ, where x = x(λ) ∈ S( λ), u λ(x) ∈ A λ(x), w λ(x) ∈ R λ(x), z λ(x) ∈ T λ(x) and

v = G λ(x) − ρ

p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x)

Then for all λ ∈ Ω, the solution set S(λ) of the problem (2.4 ) is nonempty and S(λ) is δ-Lipschitz continuous at λ.

Proof For each fixed λ ∈ Ω, φλ( x) has a fixed point, that is, there exists a x( λ) ∈ H such

thatx(λ) ∈ φ λ( x(λ)) FromLemma 2.6, we havex(λ) ∈ S(λ), hence S(λ) andS(λ)

coincides with the set of fixed point ofφ λ( x) In particular, S(λ) coincides with the set of

Trang 7

fixed point ofφ λ(x) Now we show that S(λ) is δ-Lipschitz continuous at λ For all x(λ) ∈ S(λ) and x(λ) ∈ S(λ) there exist u λ(x(λ)) ∈ A λ(x(λ)), w λ(x(λ)) ∈ R λ(x(λ)), z λ(x(λ)) ∈

T λ( x(λ)), u λ(x(λ)) ∈ A λ(x(λ)), w λ(x(λ)) ∈ R λ(x(λ)) and z λ(x(λ)) ∈ T λ(x(λ)) such that x(λ) = x(λ) − G λ



x(λ)

+m

x(λ)

+P K λ



G λ



x(λ)

− ρ

p λ



u λ



x(λ)

f λ



w λ



x(λ)

− g λ



z λ



x(λ)

− m

x(λ) 

,

x( λ) = x( λ) − G λ

x( λ)

+m

x( λ)

+P K λ

G λ

x( λ)

− ρ

p λ

u λ

x( λ)

f λ

w λ

x

λ

− g λ

z λ

x(λ)

− m

x

λ 

.

(3.2) Writex = x(λ) and x = x(λ) Taking any u λ( x) ∈ A λ( x), w λ( x) ∈ R λ( x) and z λ( x) ∈

T λ( x), we have

 x − x  ≤ x − G λ( x) + m(x)

+P K λ



G λ( x) − ρ

p λ

u λ( x)

f λ

w λ( x)

− g λ

z λ( x)

− m(x)

x − G λ

x

+m(x)

+P K λ



G λ( x) − ρ

p λ



u λ( x)

f λ



w λ( x)

− g λ



z λ( x)

− m(x)

+ x − G λ( x) + m(x)

+P K λ

G λ( x) − ρ

p λ

u λ( x)

f λ

w λ( x)

− g λ

z λ( x)

− m(x)

x − G λ(x) + m(x)

+P K λ

G λ(x) − ρ

p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x)

− m(x)

≤ θ  x − x + G λ( x) − G

λ(x)

+ P K

λ



G λ( x) − ρ

p λ

u λ( x)

f λ

w λ( x)

− g λ

z λ( x)

− m(x)

− P K λ

G λ(x) − ρ

p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x)

− m(x)

+ P K

λ



G λ(x) − ρ

p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x)

− m(x)

− P K λ

G λ(x) − ρ

p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x)

− m(x)

≤ θ  x − x + 2 G λ( x) − G

λ(x) +ρ p λ

u λ( x)

− p λ

u λ(x)

+ρ f λ

w λ( x)

− f λ

w λ(x)

+ρ g λ

z λ(x)

− g λ

z λ(x) + P K

λ(v) − P k λ(v) ,

(3.3) where,v = G λ(x) − ρ(p λ(u λ(x)) −(f λ(w λ(x)) − g λ( λ(x)))) − m(x) Since, x = x(λ) ∈ S(λ)

andx = x(λ) ∈ S(λ) are arbitrary, it follows that

δ

S(λ), S(λ)

 1

1− θ 2 G λ( x) − G

λ(x) +ρ p λ

u λ( x)

− p λ

u λ(x) +ρ f λ

w λ( x)

− f λ

w λ(x) +ρ g λ

z λ( x)

− g λ

z λ(x) + P K

λ(v) − P K λ(v) .

(3.4)

Trang 8

From theδ-Lipschitz continuity of A, R, T at λ; Lipschitz continuity of G and P K λ(v) at

Theorem 3.2 If we assume the hypothesis of Lemma 2.7 , then

(i)φ : H ×Ω→ C(H) defined by ( 2.15 ) is a compact valued uniform θ- H-contraction

mapping with respect to λ ∈ Ω;

(ii) for each λ ∈ Ω, (2.4 ) has nonempty solution set S(λ), closed in H.

Proof (i) For each (x, λ) ∈ H × Ω; Aλ( x), R λ( x), T λ( x) ∈ C(H) and P K λ are continu-ous, follows from (2.15) of φ λ( x) ∈ C(H) Now, we show that φ λ( x) is a uniform

θ-

H-contraction mapping with respect to λ ∈ Ω For any a ∈ φ λ(x), there exist u λ(x) ∈

A λ( x) ∈ C(H), w λ( x) ∈ R λ( x) ∈ C(H) and z λ( x) ∈ T λ( x) ∈ C(H) such that

a = x − G λ( x) + m(x) + P K λ



G λ( x) − ρ

p λ

u λ( x)

f λ

w λ( x)

− g λ

z λ( x)

− m(x)

.

(3.5) Note that (y, λ) ∈ H × Ω; Aλ( y), R λ( y), T λ( y) ∈ C(H), then there exist u λ( y) ∈ A λ( y),

w λ(y) ∈ R λ(y) and z λ(y) ∈ T λ(y) such that

p λ

u λ( x)

− p λ

u λ( y) ≤ ξ u λ( x) − u λ( y) ≤ ξ H 

A λ( x), A λ( y)

,

f λ

w λ( x)

− f λ



w λ( y) ≤ χ w λ( x) − w λ( y) ≤ χ HR λ( x), R λ( y) ,

g λ

z λ( x)

− g λ

z λ( y) ≤ σ z λ( x) − z λ( y) ≤ σ HT λ( x), T λ( y) .

(3.6)

Let

b = y − G λ(y) + m(y) + P K λ

G λ(y) − ρ

p λ

u λ(y)

f λ

w λ(y)

− g λ

z λ(y)

− m(y)

, (3.7) then

By using the similar argument as in the proof ofLemma 2.7, we can obtain

 a − b  ≤ 2

μ +

12α + β2

+

12ρ(r − s) + ρ2(γχ + σ ν)2+ρξη

 x − y 

q + t(ρ) + ρξη

where

θ = q + t(ρ) + ρξη, t(ρ) =12ρ(r − s) + ρ2(γχ + σ ν)2,

q =2

μ +

12α + β2 

.

(3.10)

Trang 9

By conditions (2.23) and (2.24),θ < 1, and hence we have

sup

a ∈ φ λ(x)

d

a, φ λ( y)

By the similar arguments, we have

sup

b ∈ φ λ(y)

d

φ λ( x), b

Hence, by the Hausdorff metricH, we obtain



H

φ λ( x), φ λ( y)

Thereforeφ λ( x) is a uniform θ- H-contraction mapping with respect to λ Ω

(ii) Sinceφ λ(x) is a uniform θ- H-contraction with respect to λ Ω, hence by Nadler theorem [8],φ λ( x) has a fixed point x(λ) Since S(λ) , then let{ x n} ⊂ S(λ) and x n →

x0asn → ∞ Therefore,

x n ∈ φ λ( x n), n =1, 2, . (3.14) From (i), we have



H

φ λ( x n), φ λ( x0)

If follows that

d

x0,φ λ( x0)

x0− x n +d

x n, φ λ( x n)

+Hφ λ( x n), φ λ( x0)

(1 +θ) x n − x0 −→0, asn −→ ∞, (3.16)

hencex0∈ φ λ( x0) andx0∈ S(λ) Therefore S(λ) is closed in H. 

Theorem 3.3 Assume the hypothesis as in Theorem 3.1 Then for all λ ∈ Ω, the solution set S(λ) of ( 2.4 ) is nonempty and S(λ) is H-Lipschitz continuous at λ.

Proof FromTheorem 3.2(ii), the solution setS(λ) of (2.4) is a nonempty closed set in

H Now, we show that S(λ) is H-Lipschitz continuous at λ By Theorem 3.2(i),φ λ( x) and

φ λ(x) are both θ- H-contraction mappings From Lemma 2.8, we have



H

S(λ), S( λ)



1

1− θ



sup

x ∈ H



H

φ λ( x), φ λ(x)

Taking anya ∈ φ λ( x), ∃ u λ( x) ∈ A λ( x), w λ( x) ∈ R λ( x) and z λ( x) ∈ T λ( x) such that

a = x − G λ( x) + m(x) + P K λ



G λ( x) − ρ

p λ



u λ( x)

f λ



w λ( x)

− g λ



z λ( x)

− m(x)

.

(3.18)

Trang 10

For u λ( x) ∈ A λ( x) ∈ C(H), w λ( x) ∈ R λ( x) ∈ C(H), z λ( x) ∈ T λ( x) ∈ C(H), there exist

u λ(x) ∈ A λ(x), w λ(x) ∈ R λ(x) and z λ(x) ∈ T λ(x) such that

u λ( x) − u

λ(x) ≤  H

A λ( x), A λ(x)

,

w λ(x) − w

λ(x) ≤  H

R λ(x), R λ(x)

,

z λ( x) − z

λ(x) ≤  H

T λ( x), T λ(x)

.

(3.19)

Let

b = x − G λ(x) + m(x) + P K λ

G λ(x) − ρ

p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x)

− m(x)

, (3.20) then

It follows that

 a − b  ≤ G λ( x) − G

λ(x)

+ P K

λ { G λ( x) − ρ

p λ

u λ( x)

f λ

w λ( x)

− g λ

z λ( x)

− m(x)

− P K λ { G λ(x) − ρ

p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x)

− m(x) }

+ P K

λ



G λ(x) − ρ

p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x)

− m(x)

− P K λ

G λ(x) − ρ

p λ

u λ(x)

f λ

w λ(x)

− g λ

z λ(x)

− m(x)

2 G λ( x) − G

λ(x) +ρ p λ

u λ( x)

− p λ

u λ(x)

+ρ f λ

w λ( x)

− f λ

w λ(x) +ρ g λ

z λ( x)

− g λ

z λ(x)

+ P K

λ(v) − P K λ(v) ≤2 G λ( x) − G

λ(x)

+ρ p λ

u λ( x)

− p λ

u λ( x) +ρ p

λ



u λ( x)

− p λ

u λ(x)

+ρ f λ

w λ( x)

− f λ

w λ( x) +ρ f

λ



w λ( x)

− f λ

w λ(x)

+ρ g λ

z λ( x)

− g λ

z λ( x) +ρ g

λ



z λ( x)

− g λ

z λ(x)

+ P K

λ(v) − P K λ(v) ,

(3.22)

wherev = G λ(x) − ρ(p λ(u λ(x)) −(f λ(w λ(x)) − g λ( λ(x)))) − m(x).

Write

M =2 G λ( x) − G

λ(x) +ρ p λ

u λ( x)

− p λ

u λ( x)

+ρ f λ

w λ( x)

− f λ

w λ( x) +ρ g λ

z λ( x)

− g λ

z λ( x)

+ρξ H 

A λ( x), A λ(x)

+ρχ H 

R λ( x), R λ(x)

+ρσ H 

T λ( x), T λ(x)

+ P K (v) − P K (v) .

(3.23)

Ngày đăng: 22/06/2014, 22:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm