TRIEBEL-LIZORKIN SPACESLANZHE LIU Received 4 February 2006; Revised 20 September 2006; Accepted 28 September 2006 The continuity of some multilinear operators related to certain convolut
Trang 1TRIEBEL-LIZORKIN SPACES
LANZHE LIU
Received 4 February 2006; Revised 20 September 2006; Accepted 28 September 2006
The continuity of some multilinear operators related to certain convolution operators on the Triebel-Lizorkin space is obtained The operators include Littlewood-Paley operator and Marcinkiewicz operator
Copyright © 2006 Lanzhe Liu This is an open access article distributed under the Cre-ative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
1 Introduction
LetT be the Calder ´on-Zygmund singular integral operator, a well-known result of
Coif-man et al (see [6]) states that the commutator [b, T]( f ) = T(b f ) − bT( f ) (where b ∈
BMO) is bounded onL p(R n) (1< p < ∞); Chanillo (see [1]) proves a similar result when
T is replaced by the fractional integral operator; in [8,9], these results on the Triebel-Lizorkin spaces and the caseb ∈Lipβ (where Lip β is the homogeneous Lipschitz space)
are obtained The main purpose of this paper is to study the continuity of some multi-linear operators related to certain convolution operators on the Triebel-Lizorkin spaces
In fact, we will obtain the continuity on the Triebel-Lizorkin spaces for the multilinear operators only under certain conditions on the size of the operators As the applications, the continuity of the multilinear operators related to the Littlewood-Paley operator and Marcinkiewicz operator on the Triebel-Lizorkin spaces are obtained
2 Notations and results
Throughout this paper,Q will denote a cube of R nwith side parallel to the axes, and for a cubeQ, let f Q = | Q | −1
Q f (x)dx and f#(x) =supx ∈ Q | Q | −1
Q | f (y) − f Q | d y For
1≤ r < ∞and 0≤ δ < n, let
M δ,r(f )(x) =sup
x ∈ Q
1
| Q |1− δr/n
Q
f (y)r
d y
1/r
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2006, Article ID 58473, Pages 1 11
DOI 10.1155/JIA/2006/58473
Trang 2we denoteM δ,r(f ) = M r(f ) if δ =0, which is the Hardy-Littlewood maximal function whenr =1 (see [10]) Forβ > 0 and p > 1, let ˙ F p β, ∞be the homogeneous Triebel-Lizorkin space, and let the Lipschitz space ˙∧ βbe the space of functions f such that
f ∧˙β = sup
x, h ∈ R n,h =0
Δ[β]+1
h f (x)
whereΔk
hdenotes thekth difference operator (see [9])
We are going to study the multilinear operator as follows
Letm be a positive integer and let A be a function on R n We denote
R m+1(A; x, y) = A(x) −
| α |≤ m
1
α! D
Definition 2.1 Let F(x, t) define on R n ×[0, +∞), denote
F t(f )(x) =
R n F(x − y, t) f (y)d y,
F A
t (f )(x) =
R n
R m+1(A; x, y)
| x − y | m F(x − y, t) f (y)d y.
(2.4)
LetH be the Hilbert space H = { h : h < ∞}such that, for each fixedx ∈ R n,F t(f )(x)
andF A
t(f )(x) may be viewed as a mapping from [0, + ∞) to H Then, the multilinear
operators related toF tis defined by
T A(f )(x) =F A
and also defineT( f )(x) = F t(f )(x)
In particular, consider the following two sublinear operators
Definition 2.2 Fix ε > 0, n > δ ≥0 Letψ be a fixed function which satisfies the following
properties:
(1)
ψ(x)dx =0;
(2)| ψ(x) | ≤ C(1 + | x |)−(n+1 − δ);
(3)| ψ(x + y) − ψ(x) | ≤ C | y | ε(1 +| x |)−(n+1+ε − δ)when 2| y | < | x |
The multilinear Littlewood-Paley operator is defined by
g A
δ(f )(x) =
∞ 0
F A
t (f )(x) 2dt
t
1/2
where
F t A(f )(x) =
R n
R m+1(A; x, y)
| x − y | m ψ t(x − y) f (y)d y (2.7)
Trang 3andψ t(x) = t − n+δ ψ(x/t) for t > 0 Denote that F t(f ) = ψ t ∗ f , and also define that
g δ(f )(x) =
∞ 0
F t(f )(x) 2dt
t
1/2
which is the Littlewood-Paleyg function when δ =0 (see [11])
LetH be the space H = { h : h =(∞
0 | h(t) |2dt/t)1/2 < ∞}, then, for each fixedx ∈ R n,
F t A(f )(x) may be viewed as a mapping from [0, + ∞) toH, and it is clear that
g δ(f )(x) =F t(f )(x), g A
δ(f )(x) =F A
t (f )(x). (2.9)
Definition 2.3 Let 0 ≤ δ < n, 0 < γ ≤1 andΩ be homogeneous of degree zero on R n
such that
S n −1Ω(x)dσ(x)=0 Assume thatΩ∈Lipγ(S n −1), that is, there exists a con-stantM > 0 such that for any x, y ∈ S n −1,| Ω(x) − Ω(y) | ≤ M | x − y | γ The multilinear Marcinkiewicz operator is defined by
μ A δ(f )(x) =
∞ 0
F A
t (f )(x) 2dt
t3
1/2
where
F A
t (f )(x) =
| x − y |≤ t
Ω(x − y)
| x − y | n −1− δ
R m+1(A; x, y)
| x − y | m f (y)d y; (2.11) denote
F t(f )(x) =
| x − y |≤ t
Ω(x − y)
| x − y | n −1− δ f (y)d y, (2.12) and also define that
μ δ(f )(x) =
∞ 0
F t(f )(x) 2dt
t3
1/2
which is the Marcinkiewicz operator whenδ =0 (see [12])
LetH be the space H = { h : h =(∞
0 | h(t) |2dt/t3)1/2 < ∞} Then, it is clear that
μ δ(f )(x) =F t(f )(x), μ A
δ(f )(x) =F A
t (f )(x). (2.14)
It is clear that Definitions2.2and 2.3are the particular examples ofDefinition 2.1 Note that whenm =0,T Ais just the commutator ofF t andA, while when m > 0, it is
nontrivial generalizations of the commutators It is well known that multilinear oper-ators are of great interest in harmonic analysis and have been widely studied by many authors (see [2–5,7]) The main purpose of this paper is to study the continuity for the multilinear operators on the Triebel-Lizorkin spaces We will prove the following theo-rems inSection 3
Theorem 2.4 Let g δ A be the multilinear Littlewood-Paley operator as in Definition 2.2 If
0< β < min(1, ε) and D α A ∈ ∧˙β for | α | = m, then
Trang 4(a)g A
δ maps L p(R n ) continuously into ˙ F q β, ∞(R n ), for 1 < p < n/δ and 1/q =1/ p − δ/n;
(b)g δ A maps L p(R n ) continuously into L q(R n ) for 1 < p < n/(δ + β) and 1/ p −1/q =
(δ + β)/n.
Theorem 2.5 Let μ A
δ be the multilinear Marcinkiewiz operator as in Definition 2.3 If 0 <
β < min(1/2, γ) and D α A ∈ ∧˙β for | α | = m, then
(a)μ A δ maps L p(R n ) continuously into ˙ F q β, ∞(R n ) for 1 < p < n/δ and 1/q =1/ p − δ/n,
(b)μ A
δ maps L p(R n ) continuously into L q(R n ) for 1 < p < n/(δ + β) and 1/ p −1/q =
(δ + β)/n.
3 Main theorem and proof
We first prove a general theorem
Theorem 3.1 (main theorem) Let 0 ≤ δ < n, 0 < β < 1, and D α A ∈ ∧˙β for | α | = m Sup-pose F t , T, and T A are the same as in Definition 2.1, if T is bounded from L p(R n ) to L q(R n)
for 1 < p < n/δ and 1/q =1/ p − δ/n, and T satisfies the following size condition:
F A
t (f )(x) − F A
t (f )
| α |= m
D α A
˙
∧ β | Q | β/n M δ,1 f (x) (3.1)
for any cube Q with supp f ⊂(2Q) c and x ∈ Q, then
(a)T A is bounded from L p(R n ) to ˙ F q β, ∞(R n ) for 1 < p < n/δ and 1/q =1/ p − δ/n,
(b)T A is bounded from L p(R n ) to L q(R n ) for 1 < p < n/(δ + β) and 1/q =1/ p −(δ + β)/n.
To prove the theorem, we need the following lemmas
Lemma 3.2 (see [9]) For 0 < β < 1, 1 < p < ∞ ,
f F˙β, p ∞ ≈
sup
Q
1
| Q |1+β/n
Q
f (x) − f Qdx
L p
≈
sup
·∈ Q
inf
c
1
| Q |1+β/n
Q
f (x) − cdx
L p
(3.2)
Lemma 3.3 (see [9]) For 0 < β < 1, 1 ≤ p ≤ ∞ ,
f ∧˙β ≈sup
Q
1
| Q |1+β/n
Q
f (x) − f Qdx
≈sup
Q
1
| Q | β/n
1
| Q |
Q
f (x) − f Qp
dx
1/ p
.
(3.3)
Lemma 3.4 (see [1,2]) Suppose that 1 ≤ r < p < n/δ and 1/q =1/ p − δ/n Then
M δ,r(f )
Trang 5Lemma 3.5 (see [5]) Let A be a function on R n and D α A ∈ L q(R n ) for | α | = m and some
q > n Then
R m(A; x, y) ≤ C | x − y | m
| α |= m
1
Q(x, y)
Q(x,y)
D α A(z)q
dz
1/q
, (3.5)
where Q(x, y) is the cube centered at x and has side length 5 √ n | x − y | .
Proof of Theorem 3.1 (main theorem) Fix a cube Q = Q(x0,l) and x∈ Q Let Q=5√ nQ and A(x) = A(x) −| α |= m(1/α!)(D α A) Qx α, then R m(A; x, y) = R m(A; x, y) and D α A=
D α A −(D α A) Qfor| α | = m We write, for f1= f χ Qand f2= f χ R n \ Q,
F t A(f )(x) =
R n
R m+1 A; x, y
| x − y | m F(x − y, t) f (y)d y
=
R n
R m+1 A; x, y
| x − y | m F(x − y, t) f2(y)d y
+
R n
R m A; x, y
| x − y | m F(x − y, t) f1(y)d y
| α |= m
1
α!
R n
F(x − y, t)(x − y) α
| x − y | m D α A(y) f 1(y)d y,
(3.6)
then
T A(f )(x) − T A
t (f )(x) − F A
t
f2 x0
≤
F t
R
m A; x, ·
| x − ·| m f1
(x)
| α |= m
1
α!
F t
(x − ·)α
| x − ·| m D α A f 1(x)
+F A
t
f2 (x) − F A
t
f2 x0 A(x) + B(x) + C(x),
(3.7)
thus,
1
| Q |1+β/n
Q
T A(f )(x) − T A(f )
x0 dx
| Q |1+β/n
Q A(x)dx + 1
| Q |1+β/n
Q B(x)dx
| Q |1+β/n
Q C(x)dx : = I + II + III.
(3.8)
Trang 6Now, let us estimateI, II, and III, respectively First, for x ∈ Q and y ∈ Q, using Lemmas
3.3and3.5, we get
R m A; x, y C | x − y | m
| α |= m
sup
x ∈ Q
D α A(x) − D α A Q
≤ C | x − y | m | Q | β/n
| α |= m
D α A˙
∧ β,
(3.9)
thus, takingr, s such that 1 ≤ r < p and 1/s =1/r − δ/n, by the (L r,L s) boundedness ofT
and Holder’ inequality, we obtain
I ≤ C
| α |= m
D α A˙
∧ β
1
| Q |
Q
T
f1 (x)dx ≤ C
| α |= m
D α A˙
∧ βT
f1 L s | Q | −1/s
≤ C
| α |= m
D α A
˙
∧ βf1
L r | Q | −1/s ≤ C
| α |= m
D α A
˙
∧ β M δ,r(f )(x).
(3.10) Secondly, using the following inequality (see [9]):
D α A − D α A Q f χ Q
L r ≤ C | Q |1/s+β/nD α A
˙
∧ β M δ,r(f )(x), (3.11) and similar to the proof ofI, we gain
II ≤ C
| α |= m
D α A
˙
∧ β M δ,r(f )(x). (3.12) ForIII, using the size condition of T, we have
III ≤ C
| α |= m
D α A
˙
∧ β M δ,1(f )( x). (3.13)
We now put these estimates together; and taking the supremum over allQ such that
x ∈ Q, and using Lemmas3.2and3.4, we obtain
T A(f )
˙
F β, q ∞ ≤ C
| α |= m
D α A
˙
This completes the proof of (a)
(b) By same argument as in proof of (a), we have
1
| Q |
Q
T A(f )(x) − T A
f2 x0 dx
≤ C
| α |= m
D α A˙
∧ β
M δ+β,r(f ) + M δ+β,1(f ) , (3.15)
thus,
T A(f ) #≤ C
| α |= m
D α A
˙
∧ β
M δ+β,r(f ) + M δ+β,1(f ) (3.16)
Trang 7Now, usingLemma 3.4, we gain
T A(f )
L q ≤ C T A(f ) #
L q
≤ C
| α |= m
D α A
˙
∧ β M δ+β,r(f )
L q+M δ+β,1(f )
L q ≤ C f L p (3.17)
To prove Theorems2.4and2.5, sinceg δandμ δare all bounded fromL p(R n) toL q(R n) for 1< p < n/δ and 1/q =1/ p − δ/n (see [11,12]), it suffices to verify that g A
δ andμ A δ
satisfy the size condition inTheorem 3.1 (main theorem).
Suppose suppf ⊂(2Q) c and x ∈ Q = Q(x0,l) Note that | x0− y | ≈ | x − y |for y ∈
(2Q) c
Forg δ A, we write
F t A(f )(x) − F t A(f )
x0
=
R n \ Q
ψ
t(x − y)
| x − y | m − ψ t
x0− y
x0− ym
R m A; x, y f (y)d y
+
R n \ Q
ψ t
x0− y f (y)
x0− ym
R m A; x, y − R m A; x0,y d y
| α |= m
1
α!
R n \ Q
ψ
t(x − y)(x − y) α
| x − y | m − ψ t
x0− y x0− y α
x0− ym
D α A(y) f (y)d y
= I1+I2+I3.
(3.18)
By the condition onψ, we obtain
I1 ≤C
R n \ Q
x − x0
x0− ym+1R m A; x, y f (y)∞
0
tdt
t +x0− y 2(n+1 − δ)
1/2
d y
+C
R n \ Q
x − x0ε
x0− ymR m A; x, y f (y)∞
0
tdt
t +x0− y 2(n+1+ε − δ)
1/2
d y
≤ C
| α |= m
D α A˙
∧ β | Q | β/n∞
k =0
2k+1 Q\2k+1 Q
x − x0
x0− yn+1 − δ+ x − x0ε
x0− yn+ε − δ f (y)d y
≤ C
| α |= m
D α A
˙
∧ β | Q | β/n
∞
k =1
2− k+ 2− kε
1
2k Q 1− δ/n
2k Q f (y)d y
≤ C
| α |= m
D α A
˙
∧ β | Q | β/n M δ,1(f )(x).
(3.19)
Trang 8ForI2, by the formula (see [5]):
R m A; x, y − R m A; x0,y =
| η | <m
1
η! R m −| η |
D η A; x, x 0 (x − y) η (3.20)
andLemma 3.5, we get
R m A; x, y − R m A; x0,y C
| α |= m
D α A˙
∧ β | Q | β/nx − x0x0− ym −1
, (3.21)
thus, similar to the proof ofI1,
I2 ≤C
R n \ Q
R m A; x, y − R m A; x0,y
x0− ym+n − δ f (y)d y
≤ C
| α |= m
D α A
˙
∧ β | Q | β/n∞
k =0
2k+1 Q\2k Q
x − x0
x0− yn+1 − δf (y)d y
≤ C
| α |= m
D α A
˙
∧ β | Q | β/n M δ,1(f )(x).
(3.22)
ForI3, similar to the proof ofI1, we obtain
I3 ≤C
| α |= m
R n \ Q
x − x0
x0− yn+1 − δ + x − x0ε
x0− yn+ε − δ f (y)D α A(y) d y
≤ C
| α |= m
D α A
˙
∧ β | Q | β/n∞
k =1
2k(β −1)+ 2k(β − ε) M δ,1(f )(x)
≤ C
| α |= m
D α A
˙
∧ β | Q | β/n M δ,1(f )(x)
(3.23)
so that
F A
t (f )(x) − F t A(f )
| α |= m
D α A
˙
∧ β | Q | β/n M δ,1(f )(x). (3.24)
Trang 9Forμ A δ, we write
F A
t (f )(x) − F A
t(f )
x0
≤
∞
0
| x − y |≤ t, | x0− y | >t
Ω(x − y)R m A; x, y
| x − y | m+n −1− δ f (y)d y2dt
t3
1/2
+
∞
0
| x − y | >t, | x0− y |≤ t
Ω
x0− y R m A; x0,y
x0− ym+n −1− δ f (y)d y2dt
t3
1/2
+
∞
0
| x − y |≤ t, | x0− y |≤ t
Ω(x − y)R m(A; x, y)
| x − y | m+n −1− δ
−Ω x0− y R m A; x0,y
x0− ym+n −1− δ
f (y)d y2dt
t3
1/2
+C
| α |= m
∞ 0
|
x − y |≤ t
Ω(x − y)(x − y) α
| x − y | m+n −1− δ −
| x0− y |≤ t
Ω x0− y x0− y α
x0− ym+n −1− δ
× D α A(y) f (y)d y
2
dt
t3
1/2
:= J1+J2+J3+J4.
(3.25)
Then
J1≤ C
R n \ Q
f (y)R m A; x, y
| x − y | m+n −1− δ
| x − y |≤ t< | x0− y |
dt
t3
1/2
d y
≤ C
R n \ Q
f (y)R m A; x, y
| x − y | m+n −1− δ
x0− x 1/2
| x − y |3/2 d y
≤ C
| α |= m
D α A˙
∧ β | Q | β/n∞
k =1
2− k/22k Q1 1− δ/n
2k Q
f (y)d y
≤ C
| α |= m
D α A
˙
∧ β | Q | β/n M δ,1(f )(x),
(3.26)
similarly, we haveJ2≤ C
| α |= m D α A ∧˙β | Q | β/n M δ,1(f )(x).
ForJ3, by the following inequality (see [12]):
Ω(x − y)
| x − y | m+n −1− δ − Ω x0− y
x0− ym+n −1− δ
≤ C
x − x0
x0− ym+n − δ+ x − x0γ
x0− ym+n −1− δ+γ ,
(3.27)
Trang 10we gain
J3≤ C
| α |= m
D α A˙
∧ β | Q | β/n
R n \ Q
x − x0
x0− yn − δ + x − x0γ
x0− yn −1− δ+γ
×
| x0− y |≤ t, | x − y |≤ t
dt
t3
1/2f (y)d y
≤ C
| α |= m
D α A˙
∧ β | Q | β/n∞
k =1
2− k+ 2− γk M δ,1(f )(x)
≤ C
| α |= m
D α A
˙
∧ β | Q | β/n M δ,1(f )(x).
(3.28)
ForJ4, similar to the proof ofJ1,J2, andJ3, we obtain
J4≤ C
| α |= m
R n \ Q
x − x0
x0− yn+1 − δ+ x − x0 1/2
x0− yn+1/2 − δ+ x − x0γ
x0− yn+γ − δ
×D α A(y) f (y)d y
≤ C
| α |= m
D α A˙
∧ β | Q | β/n∞
k =1
2k(β −1)+ 2k(β −1/2)+ 2k(β − γ) 2k1Q
2k Q
f (y)d y
≤ C
| α |= m
D α A
˙
∧ β | Q | β/n M δ,1(f )(x).
(3.29) These yield the desired results
Acknowledgment
The author would like to express his gratitude to the referee for his comments and sug-gestions
References
[1] S Chanillo, A note on commutators, Indiana University Mathematics Journal 31 (1982), no 1,
7–16.
[2] W Chen, A Besov estimate for multilinear singular integrals, Acta Mathematica Sinica English
Series 16 (2000), no 4, 613–626.
[3] J Cohen, A sharp estimate for a multilinear singular integral in R n, Indiana University
Mathe-matics Journal 30 (1981), no 5, 693–702.
[4] J Cohen and J A Gosselin, On multilinear singular integrals on R n, Studia Mathematica 72
(1982), no 3, 199–223.
[5] , A BMO estimate for multilinear singular integrals, Illinois Journal of Mathematics 30
(1986), no 3, 445–464.
[6] R R Coifman, R Rochberg, and G Weiss, Factorization theorems for Hardy spaces in several
variables, Annals of Mathematics Second Series 103 (1976), no 3, 611–635.
... A˙
This completes the proof of (a)
(b) By same argument as in proof of (a), we have
1
| Q |... δ,r(f )(x). (3.12) ForIII, using the size condition of T, we have
III ≤ C
|... I1+I2+I3.
(3.18)
By the condition on< i>ψ, we obtain
I1 ≤C