1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo hóa học: "CONTINUITY OF MULTILINEAR OPERATORS ON TRIEBEL-LIZORKIN SPACES" potx

11 265 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 513,68 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TRIEBEL-LIZORKIN SPACESLANZHE LIU Received 4 February 2006; Revised 20 September 2006; Accepted 28 September 2006 The continuity of some multilinear operators related to certain convolut

Trang 1

TRIEBEL-LIZORKIN SPACES

LANZHE LIU

Received 4 February 2006; Revised 20 September 2006; Accepted 28 September 2006

The continuity of some multilinear operators related to certain convolution operators on the Triebel-Lizorkin space is obtained The operators include Littlewood-Paley operator and Marcinkiewicz operator

Copyright © 2006 Lanzhe Liu This is an open access article distributed under the Cre-ative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

1 Introduction

LetT be the Calder ´on-Zygmund singular integral operator, a well-known result of

Coif-man et al (see [6]) states that the commutator [b, T]( f ) = T(b f ) − bT( f ) (where b ∈

BMO) is bounded onL p(R n) (1< p < ∞); Chanillo (see [1]) proves a similar result when

T is replaced by the fractional integral operator; in [8,9], these results on the Triebel-Lizorkin spaces and the caseb ∈Lipβ (where Lip β is the homogeneous Lipschitz space)

are obtained The main purpose of this paper is to study the continuity of some multi-linear operators related to certain convolution operators on the Triebel-Lizorkin spaces

In fact, we will obtain the continuity on the Triebel-Lizorkin spaces for the multilinear operators only under certain conditions on the size of the operators As the applications, the continuity of the multilinear operators related to the Littlewood-Paley operator and Marcinkiewicz operator on the Triebel-Lizorkin spaces are obtained

2 Notations and results

Throughout this paper,Q will denote a cube of R nwith side parallel to the axes, and for a cubeQ, let f Q = | Q | −1 

Q f (x)dx and f#(x) =supx ∈ Q | Q | −1 

Q | f (y) − f Q | d y For

1≤ r < ∞and 0≤ δ < n, let

M δ,r(f )(x) =sup

x ∈ Q

 1

| Q |1− δr/n



Q

f (y)r

d y

1/r

Hindawi Publishing Corporation

Journal of Inequalities and Applications

Volume 2006, Article ID 58473, Pages 1 11

DOI 10.1155/JIA/2006/58473

Trang 2

we denoteM δ,r(f ) = M r(f ) if δ =0, which is the Hardy-Littlewood maximal function whenr =1 (see [10]) Forβ > 0 and p > 1, let ˙ F p β, ∞be the homogeneous Triebel-Lizorkin space, and let the Lipschitz space ˙∧ βbe the space of functions f such that

 f  ∧˙β = sup

x, h ∈ R n,h =0

Δ[β]+1

h f (x)

whereΔk

hdenotes thekth difference operator (see [9])

We are going to study the multilinear operator as follows

Letm be a positive integer and let A be a function on R n We denote

R m+1(A; x, y) = A(x) − 

| α |≤ m

1

α! D

Definition 2.1 Let F(x, t) define on R n ×[0, +), denote

F t(f )(x) =



R n F(x − y, t) f (y)d y,

F A

t (f )(x) =



R n

R m+1(A; x, y)

| x − y | m F(x − y, t) f (y)d y.

(2.4)

LetH be the Hilbert space H = { h :  h  < ∞}such that, for each fixedx ∈ R n,F t(f )(x)

andF A

t(f )(x) may be viewed as a mapping from [0, + ∞) to H Then, the multilinear

operators related toF tis defined by

T A(f )(x) =F A

and also defineT( f )(x) =  F t(f )(x) 

In particular, consider the following two sublinear operators

Definition 2.2 Fix ε > 0, n > δ ≥0 Letψ be a fixed function which satisfies the following

properties:

(1)

ψ(x)dx =0;

(2)| ψ(x) | ≤ C(1 + | x |)(n+1 − δ);

(3)| ψ(x + y) − ψ(x) | ≤ C | y | ε(1 +| x |)(n+1+ε − δ)when 2| y | < | x |

The multilinear Littlewood-Paley operator is defined by

g A

δ(f )(x) =

 0

F A

t (f )(x) 2dt

t

1/2

where

F t A(f )(x) =



R n

R m+1(A; x, y)

| x − y | m ψ t(x − y) f (y)d y (2.7)

Trang 3

andψ t(x) = t − n+δ ψ(x/t) for t > 0 Denote that F t(f ) = ψ t ∗ f , and also define that

g δ(f )(x) =

 0

F t(f )(x) 2dt

t

1/2

which is the Littlewood-Paleyg function when δ =0 (see [11])

LetH be the space H = { h :  h  =(

0 | h(t) |2dt/t)1/2 < ∞}, then, for each fixedx ∈ R n,

F t A(f )(x) may be viewed as a mapping from [0, + ∞) toH, and it is clear that

g δ(f )(x) =F t(f )(x), g A

δ(f )(x) =F A

t (f )(x). (2.9)

Definition 2.3 Let 0 ≤ δ < n, 0 < γ ≤1 andΩ be homogeneous of degree zero on R n

such that

S n −1Ω(x)dσ(x)=0 Assume thatΩLipγ(S n −1), that is, there exists a con-stantM > 0 such that for any x, y ∈ S n −1,| Ω(x) − Ω(y) | ≤ M | x − y | γ The multilinear Marcinkiewicz operator is defined by

μ A δ(f )(x) =

 0

F A

t (f )(x) 2dt

t3

1/2

where

F A

t (f )(x) =



| x − y |≤ t

Ω(x − y)

| x − y | n −1− δ

R m+1(A; x, y)

| x − y | m f (y)d y; (2.11) denote

F t(f )(x) =



| x − y |≤ t

Ω(x − y)

| x − y | n −1− δ f (y)d y, (2.12) and also define that

μ δ(f )(x) =

 0

F t(f )(x) 2dt

t3

1/2

which is the Marcinkiewicz operator whenδ =0 (see [12])

LetH be the space H = { h :  h  =(

0 | h(t) |2dt/t3)1/2 < ∞} Then, it is clear that

μ δ(f )(x) =F t(f )(x), μ A

δ(f )(x) =F A

t (f )(x). (2.14)

It is clear that Definitions2.2and 2.3are the particular examples ofDefinition 2.1 Note that whenm =0,T Ais just the commutator ofF t andA, while when m > 0, it is

nontrivial generalizations of the commutators It is well known that multilinear oper-ators are of great interest in harmonic analysis and have been widely studied by many authors (see [2–5,7]) The main purpose of this paper is to study the continuity for the multilinear operators on the Triebel-Lizorkin spaces We will prove the following theo-rems inSection 3

Theorem 2.4 Let g δ A be the multilinear Littlewood-Paley operator as in Definition 2.2 If

0< β < min(1, ε) and D α A ∈ ∧˙β for | α | = m, then

Trang 4

(a)g A

δ maps L p(R n ) continuously into ˙ F q β, ∞(R n ), for 1 < p < n/δ and 1/q =1/ p − δ/n;

(b)g δ A maps L p(R n ) continuously into L q(R n ) for 1 < p < n/(δ + β) and 1/ p −1/q =

(δ + β)/n.

Theorem 2.5 Let μ A

δ be the multilinear Marcinkiewiz operator as in Definition 2.3 If 0 <

β < min(1/2, γ) and D α A ∈ ∧˙β for | α | = m, then

(a)μ A δ maps L p(R n ) continuously into ˙ F q β, ∞(R n ) for 1 < p < n/δ and 1/q =1/ p − δ/n,

(b)μ A

δ maps L p(R n ) continuously into L q(R n ) for 1 < p < n/(δ + β) and 1/ p −1/q =

(δ + β)/n.

3 Main theorem and proof

We first prove a general theorem

Theorem 3.1 (main theorem) Let 0 ≤ δ < n, 0 < β < 1, and D α A ∈ ∧˙β for | α | = m Sup-pose F t , T, and T A are the same as in Definition 2.1, if T is bounded from L p(R n ) to L q(R n)

for 1 < p < n/δ and 1/q =1/ p − δ/n, and T satisfies the following size condition:

F A

t (f )(x) − F A

t (f )

| α |= m

D α A

˙

∧ β | Q | β/n M δ,1 f (x) (3.1)

for any cube Q with supp f ⊂(2Q) c and x ∈ Q, then

(a)T A is bounded from L p(R n ) to ˙ F q β, ∞(R n ) for 1 < p < n/δ and 1/q =1/ p − δ/n,

(b)T A is bounded from L p(R n ) to L q(R n ) for 1 < p < n/(δ + β) and 1/q =1/ p −(δ + β)/n.

To prove the theorem, we need the following lemmas

Lemma 3.2 (see [9]) For 0 < β < 1, 1 < p < ∞ ,

 f  F˙β, p ∞ ≈

sup

Q

1

| Q |1+β/n



Q

f (x) − f Qdx

L p



sup

·∈ Q

inf

c

1

| Q |1+β/n



Q

f (x) − cdx

L p

(3.2)

Lemma 3.3 (see [9]) For 0 < β < 1, 1 ≤ p ≤ ∞ ,

 f  ∧˙β ≈sup

Q

1

| Q |1+β/n



Q

f (x) − f Qdx

sup

Q

1

| Q | β/n

 1

| Q |



Q

f (x) − f Qp

dx

1/ p

.

(3.3)

Lemma 3.4 (see [1,2]) Suppose that 1 ≤ r < p < n/δ and 1/q =1/ p − δ/n Then

M δ,r(f )

Trang 5

Lemma 3.5 (see [5]) Let A be a function on R n and D α A ∈ L q(R n ) for | α | = m and some

q > n Then

R m(A; x, y)  ≤ C | x − y | m 

| α |= m

1

 Q(x, y)



Q(x,y)

D α A(z)q

dz

1/q

, (3.5)

where Q(x, y) is the cube centered at x and has side length 5 √ n | x − y | .

Proof of Theorem 3.1 (main theorem) Fix a cube Q = Q(x0,l) and x ∈ Q Let Q =5√ nQ and A(x) = A(x) −| α |= m(1/α!)(D α A) Q x α, then R m(A; x, y) = R m(A; x, y) and D α A =

D α A −(D α A) Q for| α | = m We write, for f1= f χ Q and f2= f χ R n \ Q,

F t A(f )(x) =



R n

R m+1 A; x, y

| x − y | m F(x − y, t) f (y)d y

=



R n

R m+1 A; x, y

| x − y | m F(x − y, t) f2(y)d y

+



R n

R m A; x, y

| x − y | m F(x − y, t) f1(y)d y

| α |= m

1

α!



R n

F(x − y, t)(x − y) α

| x − y | m D α A(y) f 1(y)d y,

(3.6)

then

T A(f )(x) − T A

t (f )(x) − F A

t

f2 x0



F t

R

m A; x, ·

| x − ·| m f1

 (x)



| α |= m

1

α!



F t

(x − ·)α

| x − ·| m D α A f 1(x)



+F A

t

f2 (x) − F A

t

f2 x0 A(x) + B(x) + C(x),

(3.7)

thus,

1

| Q |1+β/n



Q

T A(f )(x) − T A (f )

x0 dx

| Q |1+β/n



Q A(x)dx + 1

| Q |1+β/n



Q B(x)dx

| Q |1+β/n



Q C(x)dx : = I + II + III.

(3.8)

Trang 6

Now, let us estimateI, II, and III, respectively First, for x ∈ Q and y ∈ Q, using Lemmas

3.3and3.5, we get

R m A; x, y C | x − y | m 

| α |= m

sup

x ∈ Q

D α A(x) − D α A Q 

≤ C | x − y | m | Q | β/n 

| α |= m

D α A˙

∧ β,

(3.9)

thus, takingr, s such that 1 ≤ r < p and 1/s =1/r − δ/n, by the (L r,L s) boundedness ofT

and Holder’ inequality, we obtain

I ≤ C 

| α |= m

D α A˙

∧ β

1

| Q |



Q

T

f1 (x)dx ≤ C 

| α |= m

D α A˙

∧ βT

f1 L s | Q | −1/s

≤ C 

| α |= m

D α A

˙

∧ βf1

L r | Q | −1/s ≤ C 

| α |= m

D α A

˙

∧ β M δ,r(f )( x).

(3.10) Secondly, using the following inequality (see [9]):

 D α A − D α A Q f χ Q 

L r ≤ C | Q |1/s+β/nD α A

˙

∧ β M δ,r(f )(x), (3.11) and similar to the proof ofI, we gain

II ≤ C 

| α |= m

D α A

˙

∧ β M δ,r(f )( x). (3.12) ForIII, using the size condition of T, we have

III ≤ C 

| α |= m

D α A

˙

∧ β M δ,1(f )( x). (3.13)

We now put these estimates together; and taking the supremum over allQ such that

x ∈ Q, and using Lemmas3.2and3.4, we obtain

T A(f )

˙

F β, q ∞ ≤ C 

| α |= m

D α A

˙

This completes the proof of (a)

(b) By same argument as in proof of (a), we have

1

| Q |



Q

T A(f )(x) − T A

f2 x0 dx

≤ C 

| α |= m

D α A˙

∧ β

M δ+β,r(f ) + M δ+β,1(f ) , (3.15)

thus,

T A(f ) #≤ C 

| α |= m

D α A

˙

∧ β

M δ+β,r(f ) + M δ+β,1(f ) (3.16)

Trang 7

Now, usingLemma 3.4, we gain

T A(f )

L q ≤ C T A(f ) #

L q

≤ C 

| α |= m

D α A

˙

∧ β M δ+β,r(f )

L q+M δ+β,1(f )

L q ≤ C  f  L p (3.17)

To prove Theorems2.4and2.5, sinceg δandμ δare all bounded fromL p(R n) toL q(R n) for 1< p < n/δ and 1/q =1/ p − δ/n (see [11,12]), it suffices to verify that g A

δ andμ A δ

satisfy the size condition inTheorem 3.1 (main theorem).

Suppose suppf ⊂(2Q) c and x ∈ Q = Q(x0,l) Note that | x0− y | ≈ | x − y |for y ∈

(2Q) c

Forg δ A, we write

F t A (f )(x) − F t A (f )

x0

=



R n \ Q

ψ

t(x − y)

| x − y | m − ψ t

x0− y

x0− ym



R m A; x, y f (y)d y

+



R n \ Q

ψ t

x0− y f (y)

x0− ym



R m A; x, y − R m A; x0,y d y

| α |= m

1

α!



R n \ Q

ψ

t(x − y)(x − y) α

| x − y | m − ψ t

x0− y x0− y α

x0− ym



D α A(y) f (y)d y

= I1+I2+I3.

(3.18)

By the condition onψ, we obtain

I1 ≤C



R n \ Q

x − x0

x0− ym+1R m A; x, y f (y) 

0

tdt

t +x0− y 2(n+1 − δ)

1/2

d y

+C



R n \ Q

x − x0ε

x0− ymR m A; x, y f (y) 

0

tdt

t +x0− y 2(n+1+ε − δ)

1/2

d y

≤ C 

| α |= m

D α A˙

∧ β | Q | β/n

k =0



2k+1 Q \2k+1 Q

x − x0

x0− yn+1 − δ+ x − x0ε

x0− yn+ε − δ f (y)d y

≤ C 

| α |= m

D α A

˙

∧ β | Q | β/n



k =1

2− k+ 2− kε

1

2k Q  1− δ/n



2k Q f (y)d y

≤ C 

| α |= m

D α A

˙

∧ β | Q | β/n M δ,1(f )(x).

(3.19)

Trang 8

ForI2, by the formula (see [5]):

R m A; x, y − R m A; x0,y = 

| η | <m

1

η! R m −| η |

D η A; x, x 0 (x − y) η (3.20)

andLemma 3.5, we get

R m A; x, y − R m A; x0,y C 

| α |= m

D α A˙

∧ β | Q | β/nx − x0x0− ym −1

, (3.21)

thus, similar to the proof ofI1,

I2 ≤C



R n \ Q

R m A; x, y − R m A; x0,y

x0− ym+n − δ f (y)d y

≤ C 

| α |= m

D α A

˙

∧ β | Q | β/n

k =0



2k+1 Q \2k Q

x − x0

x0− yn+1 − δf (y)d y

≤ C 

| α |= m

D α A

˙

∧ β | Q | β/n M δ,1(f )(x).

(3.22)

ForI3, similar to the proof ofI1, we obtain

I3 ≤C 

| α |= m



R n \ Q

x − x0

x0− yn+1 − δ + x − x0ε

x0− yn+ε − δ f (y)D α A(y) d y

≤ C 

| α |= m

D α A

˙

∧ β | Q | β/n

k =1

2k(β −1)+ 2k(β − ε) M δ,1(f )(x)

≤ C 

| α |= m

D α A

˙

∧ β | Q | β/n M δ,1(f )(x)

(3.23)

so that

F A

t (f )(x) − F t A (f )

| α |= m

D α A

˙

∧ β | Q | β/n M δ,1(f )(x). (3.24)

Trang 9

Forμ A δ, we write

F A

t (f )(x) − F A

t(f )

x0



0



| x − y |≤ t, | x0− y | >t

Ω(x − y)R m A; x, y

| x − y | m+n −1− δ f (y)d y2dt

t3

1/2

+



0



| x − y | >t, | x0− y |≤ t

Ω

x0− y R m A; x0,y

x0− ym+n −1− δ f (y)d y2dt

t3

1/2

+



0



| x − y |≤ t, | x0− y |≤ t





Ω(x − y)R m(A; x, y)

| x − y | m+n −1− δ

Ω x0− y R m A; x0,y

x0− ym+n −1− δ





 f (y)d y2dt

t3

1/2

+C 

| α |= m

 0



|

x − y |≤ t

Ω(x − y)(x − y) α

| x − y | m+n −1− δ −



| x0− y |≤ t

Ω x0− y x0− y α

x0− ym+n −1− δ

× D α A(y) f (y)d y 





2

dt

t3

1/2

:= J1+J2+J3+J4.

(3.25)

Then

J1≤ C



R n \ Q

f (y)R m A; x, y

| x − y | m+n −1− δ



| x − y |≤ t< | x0− y |

dt

t3

1/2

d y

≤ C



R n \ Q

f (y)R m A; x, y

| x − y | m+n −1− δ

x0− x 1/2

| x − y |3/2 d y

≤ C 

| α |= m

D α A˙

∧ β | Q | β/n

k =1

2− k/22k Q 1 1− δ/n



2k Q

f (y)d y

≤ C 

| α |= m

D α A

˙

∧ β | Q | β/n M δ,1(f )(x),

(3.26)

similarly, we haveJ2≤ C

| α |= m  D α A  ∧˙β | Q | β/n M δ,1(f )(x).

ForJ3, by the following inequality (see [12]):





 Ω(x − y)

| x − y | m+n −1− δ − Ω x0− y

x0− ym+n −1− δ





 ≤ C

x − x0

x0− ym+n − δ+ x − x0γ

x0− ym+n −1− δ+γ ,

(3.27)

Trang 10

we gain

J3≤ C 

| α |= m

D α A˙

∧ β | Q | β/n



R n \ Q

x − x0

x0− yn − δ + x − x0γ

x0− yn −1− δ+γ

×



| x0− y |≤ t, | x − y |≤ t

dt

t3

1/2f (y)d y

≤ C 

| α |= m

D α A˙

∧ β | Q | β/n

k =1

2− k+ 2− γk M δ,1(f )(x)

≤ C 

| α |= m

D α A

˙

∧ β | Q | β/n M δ,1(f )(x).

(3.28)

ForJ4, similar to the proof ofJ1,J2, andJ3, we obtain

J4≤ C 

| α |= m



R n \ Q

x − x0

x0− yn+1 − δ+ x − x0 1/2

x0− yn+1/2 − δ+ x − x0γ

x0− yn+γ − δ

×D α A(y) f (y)d y

≤ C 

| α |= m

D α A˙

∧ β | Q | β/n

k =1

2k(β −1)+ 2k(β −1/2)+ 2k(β − γ) 2k1Q 



2k Q

f (y)d y

≤ C 

| α |= m

D α A

˙

∧ β | Q | β/n M δ,1(f )(x).

(3.29) These yield the desired results

Acknowledgment

The author would like to express his gratitude to the referee for his comments and sug-gestions

References

[1] S Chanillo, A note on commutators, Indiana University Mathematics Journal 31 (1982), no 1,

7–16.

[2] W Chen, A Besov estimate for multilinear singular integrals, Acta Mathematica Sinica English

Series 16 (2000), no 4, 613–626.

[3] J Cohen, A sharp estimate for a multilinear singular integral in R n, Indiana University

Mathe-matics Journal 30 (1981), no 5, 693–702.

[4] J Cohen and J A Gosselin, On multilinear singular integrals on R n, Studia Mathematica 72

(1982), no 3, 199–223.

[5] , A BMO estimate for multilinear singular integrals, Illinois Journal of Mathematics 30

(1986), no 3, 445–464.

[6] R R Coifman, R Rochberg, and G Weiss, Factorization theorems for Hardy spaces in several

variables, Annals of Mathematics Second Series 103 (1976), no 3, 611–635.

... A

˙

This completes the proof of (a)

(b) By same argument as in proof of (a), we have

1

| Q |... δ,r(f )( x). (3.12) ForIII, using the size condition of T, we have

III ≤ C 

|... I1+I2+I3.

(3.18)

By the condition on< i>ψ, we obtain

I1 ≤C

Ngày đăng: 22/06/2014, 22:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm