1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo hóa học: "GEOMETRIC AND APPROXIMATION PROPERTIES OF SOME SINGULAR INTEGRALS IN THE UNIT DISK" doc

19 286 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 582,7 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

SINGULAR INTEGRALS IN THE UNIT DISKGEORGE A.. GAL Received 23 January 2006; Revised 19 April 2006; Accepted 20 April 2006 The purpose of this paper is to prove several results in approxi

Trang 1

SINGULAR INTEGRALS IN THE UNIT DISK

GEORGE A ANASTASSIOU AND SORIN G GAL

Received 23 January 2006; Revised 19 April 2006; Accepted 20 April 2006

The purpose of this paper is to prove several results in approximation by complex Pi-card, Poisson-Cauchy, and Gauss-Weierstrass singular integrals with Jackson-type rate, having the quality of preservation of some properties in geometric function theory, like the preservation of coefficients’ bounds, positive real part, bounded turn, starlikeness, and convexity Also, some sufficient conditions for starlikeness and univalence of analytic functions are preserved

Copyright © 2006 G A Anastassiou and S G Gal This is an open access article distrib-uted under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

1 Introduction

Let us consider the open unit diskD = {z ∈ C;|z| < 1}andA(D) = { f : D → C;f is

an-alytic onD, continuous on D, f (0) =0, f (0)=1} Therefore, if f ∈ A(D), we have

f (z) = z +

k =2a k z k, for allz ∈ D.

For f ∈ A(D) and ξ ∈ R,ξ > 0, let us consider the complex singular integrals

P ξ(f )(z) = 1

2ξ

 +

−∞ f

ze iu

e −| u | /ξ du, z ∈ D,

Q ξ( f )(z) = π ξ

π

− π

f

ze iu

u2+ξ2du, z ∈ D, Q ξ ∗(f )(z) = π ξ

 +

−∞

f

ze − iu

u2+ξ2 du, z ∈ D,

R ξ(f )(z) =2ξ3

π

 +

−∞

f

ze iu



u2+ξ2  2du, z ∈ D,

W ξ(f )(z) =1

πξ

π

− π f

ze iu

e − u2/ξ du, z ∈ D,

W ξ ∗(f )(z) =1

πξ

 +

−∞ f

ze − iu

e − u2/ξ du, z ∈ D.

(1.1)

Hindawi Publishing Corporation

Journal of Inequalities and Applications

Volume 2006, Article ID 17231, Pages 1 19

DOI 10.1155/JIA/2006/17231

Trang 2

HereP ξ(f ) is said to be of Picard type, Q ξ(f ), Q ξ ∗(f ), and R ξ(f ) are said to be of

Poisson-Cauchy type, andW ξ(f ) and W ξ ∗(f ) are said to be of Gauss-Weierstrass type.

In the very recent papers [3–5], classes of convolution complex polynomials were in-troduced and their approximation properties regarding rates, global smoothness preser-vation properties, and some geometric properties like the preserpreser-vation of coefficients’ bounds, positivity of real part, bounded turn, starlikeness, convexity, and univalence were proved

The aim of this paper is to obtain similar properties for the above-defined complex singular integrals

2 Complex Picard integrals

In this section, we study the properties ofP ξ(f )(z).

Firstly, we present the approximation properties

Theorem 2.1 Let f ∈ A(D) and ξ ∈ R, ξ > 0 Then

(i)P ξ(f )(z) is continuous on D, analytic on D, and P ξ(f )(0) = 0;

(ii)ω1(P ξ(f ); δ) D ≤ ω1(f ; δ) D , for all δ ≥ 0, where ω1(f ; δ) D =sup{| f (z1)− f (z2)|;

z1,z2∈ D, |z1− z2| ≤ δ};

(iii)|P ξ(f )(z) − f (z)| ≤ Cω2(f ; ξ) ∂D , for all z ∈ D, ξ > 0, where

ω2(f ; ξ) ∂D =supf

e i(x+u)

2f

e iu

+ f

e i(x − u);x ∈ R,|u| ≤ ξ

Proof (i) Let z0,z n ∈ D be with lim n →∞ z n = z0 We get

P ξ(f )

z n

− P ξ( f )

z0 ≤ 1

2ξ

 +

−∞

f

z n e iu

− f

z0e iue −| u | /ξ du

1

2ξ

 +

−∞ ω1



f ;z n e iu − z0e iu

D e −| u | /ξ du

= 1

2ξ

 +

−∞ ω1



f ;z n − z0

D e −| u | /ξ du

= ω1



f ;z n − z0

D

(2.2)

Passing to limit withn → ∞, it follows thatP ξ(f )(z) is continuous at z0∈ D, since f is

continuous onD It remains to prove that P ξ(f )(z) is analytic on D For f ∈ A(D), we

can write f (z) =∞ k =0a k z k,z ∈ D For fixed z ∈ D, we get f (ze iu)=∞ k =0a k e iku z k and since|a k e iku | = |a k |, for allu ∈ R, and the series 

k =0a k z k is absolutely convergent, it follows that the series

k =0a k e iku z kis uniformly convergent with respect tou ∈ R This immediately implies that the series can be integrated term by term, that is,

P ξ(f )(z) = 1

2ξ

k =0

a k z k



−∞ e iku e −| u | /ξ du

Also, sincea0=0, we getP ξ(f )(0) =0

Trang 3

(ii) Letz1,z2∈ D, |z1− z2| ≤ δ We get

P ξ(f )

z1



− P ξ( f )

z2 ≤ 1

2ξ

 +

−∞

f

z1e iu

− f

z2e iue −| u | /ξ du

≤ ω1



f ;z1− z2

D ≤ ω1(f ; δ) D

(2.4)

Passing to sup with|z1− z2| < δ, the desired inequality follows.

(iii) We have

P ξ(f )(z) − f (z) = 1

2ξ

 +

−∞ f

ze iu

− f (z)

e −| u | /ξ du

= 1

2ξ



0 f

ze iu

2f (z) + f

ze − iu

e − u/ξ du,

(2.5)

which implies

P ξ(f )(z) − f (z)  ≤ 1

2ξ



0

f

ze iu

2f (z) + f

ze − iue − u/ξ du, (2.6)

for allz ∈ D.

By the maximum modulus principle (see, e.g., [3, page 421]), we can take|z| =1, case when

f

ze iu

2f (z) + f

ze − iu  ≤ ω2(f ; u) ∂D, (2.7) which implies that for allz ∈ D we have

P ξ(f )(z) − f (z)  ≤ 1

2ξ

 +

0 ω2(f ; u) ∂D e − u/ξ du

= 1

2ξ

 +

0 ω2



f ; u

ξ · ξ



∂D

e − u/ξ du

1

2ξ

 +

0



1 +u

ξ

 2

e − u/ξ du

ω2(f ; ξ) ∂D ≤ Cω2(f ; ξ) ∂D

(2.8)

(for the last inequalities, see, e.g., [2, proof of Theorem 2.1(i), page 252]) 

Remark 2.2. Theorem 2.1(ii) and (iii) remain valid for f only continuous on D.

In what follows, we present some geometric properties ofP ξ(f )(z).

Theorem 2.3 If f (z) =∞ k =0a k z k , for all z ∈ D, then

P ξ(f )(z) =

k =0

a k

Trang 4

for all z ∈ D, that is, if f (0) = 0, then P ξ(f )(0) = 0 and if f (0)= 1, then P  ξ(f )(0) =

1/(1 + ξ2) = 1, for all ξ > 0 Also,

a k

P ξ(f )  = a k( f )

1 +ξ2k2



 ≤a k( f ), ∀k =0, 1, . (2.10)

Proof In the proof ofTheorem 2.1(i), we can write

P ξ(f )(z) =

k =0

a k z k

 1

2ξ

 +

−∞ e iku e −| u | /ξ du



But

1

2ξ

+

−∞ e iku e −| u | /ξ du

= 1

2ξ

+

−∞cos(ku) · e −| u | /ξ du =1

ξ

+

0 cos(ku)e − u/ξ du

=1

ξ · e − u/ξ −(1/ξ) cos(ku) + k sin(ku)



12+k2





1 +k2ξ2,

(2.12)

Now, recall that a function f ∈ A(D) is starlike if it is univalent and f (D) is a starlike

plane domain with respect to 0, and is convex if it is univalent onD and f (D) is a convex

plane domain

Also, let us introduce the following classes of analytic functions:

S1=



f ∈ A(D); f (z) = z +

k =2

a k z k,

k =2

ka k  ≤1



,

S2=



f analytic in D, f (z) =

k =1

a k z k,z ∈ D,a1 ≥ ∞

k =2

a k,

S3=f ∈ A(D);f (z)  ≤1,∀z ∈ D

,

=f : D −→ C;f is analytic on D, f (0) =1, Re f (z)

> 0, ∀z ∈ D

,

=f ∈ A(D); Re f (z)

> 0, ∀z ∈ D

,

S M =f ∈ A(D);f (z)< M, ∀z ∈ D

, M > 1.

(2.13)

According to, for example, [6, Exercise 4.9.1, page 97], iff ∈ S1, then|z f (z)/ f (z) −1<

1, for allz ∈ D, and therefore f is starlike (and univalent) on D.

According to [1, page 22 ], if f ∈ S2, then f is starlike (and univalent) on D.

By [7], if f ∈ S3, then f is starlike (and univalent) on D Also, it is well known that

is the class of functions with bounded turn (i.e.,|argf (z)| < π/2, for all z ∈ D) and that

f ∈ ᏾ implies the univalency of f on D.

According to, for example, [6, Exercise 5.4.1, page 111], f ∈ S M implies thatf is

uni-valent in{z ∈ C;|z| < 1/M}

Trang 5

We present the following.

Theorem 2.4 For all ξ > 0,

P ξ

S2



Proof ByTheorem 2.3, for f (z) =∞ k =1a k z k ∈ S2, we get

k =2



 a k

1 +ξ2k2



 = ∞

k =2

a k

1 +ξ2· 1 +ξ2

1 +ξ2k2 1

1 +ξ2

k =2

a k  ≤ a1 

1 +ξ2 (2.15)

and sinceP ξ(f )(z) =∞ k =0(a k /(1 + ξ2k2))z k, it follows thatP ξ(f ) ∈ S2.

Let f (z) =∞ k =0a k z k ∈ ᏼ, that is, a0 =1 and if f (z)= U(x, y) + iV (x, y), z =x + iy ∈ D,

thenU(x, y) > 0, for all z = x + iy ∈ D.

We getP ξ(f )(0) = a0=1 and

P ξ( f )(z) = 1

2ξ

 +

−∞ U

r cos(u + t), r sin(u + t)

e −| u | /ξ du

+i · 1

2ξ

 +

−∞ V

r cos(u + t), r sin(u + t)

e −| u | /ξ du, ∀z = re it ∈ D,

(2.16)

which immediately implies

Re P ξ( f )(z)

= 1

2ξ

 +

−∞ U

r cos(u + t), r sin(u + t)

e −| u | /ξ du > 0, (2.17)

Theorem 2.5 For all ξ > 0, (1 + ξ2)P ξ( S1)⊂ S1, (1 + ξ2)P ξ( S M)⊂ S M(1+ξ2 ), and (1 +

ξ2)P ξ(S3,ξ)⊂ S3, where

S3,ξ=



f ∈ S3; f (z)  ≤ 1

1 +ξ2,∀z ∈ D



Proof Let f ∈ S1 ByTheorem 2.3, we obtain



1 +ξ2

P ξ(f )(z) =

k =1

a k 1 +ξ2

if f (z) =∞ k =1a k z k ∈ S1 It follows that (1 +ξ2)P  ξ(f )(0) = a1=1, that is,



1 +ξ2

P ξ(f )(z) = z +

k =2

a k · 1 +ξ2

1 +ξ2k2z k,

k =2

ka k 1 +ξ2

1 +ξ2k2

k =2

ka k  ≤1,

(2.20)

that is, (1 +ξ2)P ξ(f ) ∈ S1.

Trang 6

Let f ∈ S M We get

1 +ξ2 

P ξ (f )(z)  = 1 +ξ2 

·

21ξ−∞+∞ f 

ze iu

e iu e −| u | /ξ du



1 +ξ2 1

2ξ

+

−∞

f 

ze iue −| u | /ξ du < M

1 +ξ2 

, z ∈ D.

(2.21)

Also,P ξ(f )(0) =0 and (1 +ξ2)P  ξ(f )(0) =1, which implies that (1 +ξ2)P ξ(f ) ∈ S M(1+ξ2 ). Now, let f ∈ S3,ξ We have



1 +ξ2

P  ξ(f )(z) =1 +ξ2

· 1

2ξ

+

−∞ f 

ze iu

e2iue −| u | /ξ du, (2.22) which implies

1 +ξ2 

P ξ (f )(z)  ≤ 1 +ξ2 1

2ξ ·

 +

−∞

f 

ze iue −| u | /ξ du ≤1, (2.23)

Remarks 2.6 (1) Since the constant (1 + ξ2) does not influence the geometric properties

ofP ξ(f ), it follows that for all ξ > 0 we have the following:

(i) if f ∈ S1, thenP ξ(f ) is starlike (and univalent) in D;

(ii) iff ∈ S M, then P ξ(f ) is univalent in {z ∈ C;|z| < 1/M(1 + ξ2)};

(iii) iff ∈ S3,ξ⊂ S3, thenP ξ(f ) is starlike and univalent in D.

(2) Since

P ξ (f )(z) = 1

2ξ

+

−∞ f 

ze iu

e iu e −| u | /ξ du, (2.24)

it is obvious that the condition Re[f (z)] > 0, for all z ∈ D, does not imply Re[P ξ (f )(z)] >

0 onD.

In this case, we may follow the idea in, for example, [5, Theorem 3.4] to construct another singular integral as follows: for f ∈ A(D), we define S ξ(f )(z) =z

0Q n( u)du with

Q n( z) = 1

2ξ

 +

−∞ f 

ze it

Then, it is an easy task to show that (1 +ξ2)S ξ(᏾)⊂ ᏾, for all ξ > 0, and the following

estimate holds:

S ξ(f )(z) − f (z)  ≤ Cω2(f ;ξ) ∂D, ∀z ∈ D, ξ > 0. (2.26) Since inf{1/(1 + ξ2);ξ ∈[0, 1]} =1/2, byTheorem 2.5, the following is immediate Corollary 2.7 P ξ(S3,1/2)⊂ S3and f ∈ S M implies that P ξ(f ) is univalent in {z ∈ C;|z| <

1/2M}, for all ξ ∈ [0, 1].

Trang 7

Remark 2.8 Of course, if we consider, for example, ξ ∈[0, 1/2], then inf{1/(1 + ξ2);x ∈

[0, 1/2]} =4/5 and byTheorem 2.5we getP ξ( S3, 4/5) ⊂ S3andf ∈ S Mimplies thatP ξ(f )

is univalent in{z ∈ C;|z| < 4/5M}, for allξ ∈[0, 1/2].

ObviouslyS3,1/2⊂ S3,5/4and{z ∈ C;|z| < 1/2M} ⊂ {z ∈ C;|z| < 4/5M}

3 Complex Poisson-Cauchy integrals

In this section, we study the properties ofQ ξ(f ), Q ∗ ξ(f ), and R ξ( f ).

Firstly, we present the approximation properties

Theorem 3.1 (i) If f (z) =∞ k =0a k z k is analytic in D, then for all ξ > 0, Q ξ(f )(z),

Q ∗ ξ(f )(z), and R ξ(f )(z) are analytic in D and the following hold in D:

Q ξ(f )(z) =

k =0

a k b k( ξ)z k, with b k( ξ) =2ξ

π

π

0

cosku

u2+ξ2du,

Q ∗ ξ(f )(z) = ∞

k =0

a k b ∗ k(ξ)z k, with b ∗ k(ξ) =2ξ

π

 +

0

cosku

u2+ξ2du,

R ξ(f )(z) =

k =0

a k c k( ξ)z k, with c k( ξ) =4ξ3

π



0

cosku



u2+ξ2  2du.

(3.1)

Also, if f is continuous on D, then Q ξ(f ), Q ξ ∗(f ), and R ξ(f ) are also continuous on D Here b1(ξ) > 0, for all ξ > 0, b1(ξ) = e − ξ , c1(ξ) =(1 +ξ)e − ξ , for all ξ > 0.

(ii)

Q ξ(f )(z) − f (z)  ≤ C ω2(f ; ξ) ∂D

ξ , ∀x ∈ D, ξ ∈(0, 1],

Q ∗

ξ(f )(z) − f (z)  ≤ C ω2(f ; ξ) ∂D

ξ , ∀z ∈ D, ξ ∈(0, 1],

R ξ(f )(z) − f (z)  ≤ Cω1(f ; ξ) D, ∀z ∈ D, ξ ∈(0, 1].

(3.2)

(iii)

ω1 

Q ∗ ξ(f ); δ

D ≤ ω1(f ; δ) D, ∀ξ ∈(0, 1],δ > 0,

ω1



Q ξ(f ); δ

D ≤ ω1(f ; δ) D, ∀ξ ∈(0, 1],∀δ > 0,

ω1



R ξ(f ); δ

D ≤ ω1(f ; δ) D, ∀ξ ∈(0, 1],δ > 0.

(3.3)

Proof (i) Let f (z) =∞ k =0a k z k,z ∈ D.

Reasoning as for the case of Picard-type integral inTheorem 2.1(i), we obtain

Q ξ(f )(z) =

k =0

a k z k

ξ

π

π

− π e iku · 1

u2+ξ2du



Trang 8

ξ

π

π

− π e iku · 1

u2+ξ2du = ξ

π

π

− π

cosku

u2+ξ2du + i ξ

π

π

− π

sinku

u2+ξ2du

=2ξ π

π

0

cosku

u2+ξ2du = b k( ξ),

Q ∗ ξ(f )(z) = ∞

k =0

a k z k



ξ π

 +

−∞ e iku · 1

u2+ξ2du



,

(3.5)

where

ξ π

+

−∞ e iku · 1

u2+ξ2du =2ξ

π



0

cosku

u2+ξ2du = b ∗ k(ξ),

R ξ(f )(z) = ∞

k =0

a k z k



2ξ3

π

 +

−∞

e iku



u2+ξ2  2du



,

(3.6)

where

2ξ3

π

 +

−∞ e iku · 1

u2+ξ2  2du =4ξ3

π



0

cosku



u2+ξ2  2du. (3.7)

The continuity of f on D implies the continuity of Q ξ(f ), Q ξ ∗(f ), and R ξ(f ) as in the

proof ofTheorem 2.1(i) forP ξ(f ).

It remains to show thatb1(ξ) > 0 and b ∗1(ξ) = e − ξ,c1(ξ) =(1 +ξ)e − ξ, for allξ > 0.

Indeed, firstly we have

b1(ξ) =2ξ

π

π

0

cosu

u2+ξ2du =2ξ

π

π/2

0

cosu

u2+ξ2du +

π

π/2

cosu

u2+ξ2du



=2ξ

π

π/2

0

cosu

u2+ξ2du −

π/2

0

sinu

(u + π/2)2+ξ2du



>2ξ

π

π/2

0

cosu −sinu

u2+ξ2 du

=2ξ

π

π/4

0

cosu −sinu

u2+ξ2 du +

π/2

π/4

cosu −sinu

u2+ξ2 du



:=2ξ

π I1+I2



.

(3.8)

Here

0< I1=

π/4

0

cosu −sinu

u2+ξ2 du >

π/4

0

cosu −sinu



π2/16

+ξ2du

= 16

π2+ 16ξ2[sinu + cos u] π/40 =16(

21)

π2+ 16ξ2 .

(3.9)

Trang 9

Also,I2< 0 and

I2 = − I2=

π/2

π/4

sinu −cosu

u2+ξ2 du ≤ 1

π2/16

+ξ2·

π/2

π/4[sinu −cosu]du

= 16

π2+ 16ξ2[cosu −sinu] π/2 π/4 =16(

21)

π2+ 16ξ2 ,

(3.10)

which implies I1+I20 Therefore, it follows that b1(ξ) > (2ξ/π)[I1+I2]0, for all

ξ > 0 Now let

b ∗1(ξ) =2ξ

π



0

cosu

u2+ξ2du =



byv = u ξ



=2

π ·



0

cos(uξ)

u2+ 1 du. (3.11) Applying now the classical residue theorem to f (z) = e iz /(z2+ 1), it is immediate that



0 (cos(uξ)/(u2+ 1))du =(π/2)e − ξ, which impliesb ∗1(ξ) =(2/π) ·(π/2)e − ξ = e − ξ, for all

ξ > 0 For c1(ξ) =(4ξ3/π) ·0(cosu/(u2+ξ2)2)du, applying the residue theorem to f (z)=

e iz /(z2+ξ2)2, we immediately get



0

cosu



u2+ξ2  2du = π

that is,c1(ξ) =(1 +ξ)e − ξ, for allξ > 0.

(ii) We can write

Q ξ(f )(z) − f (z) = ξ

π

π

0

f

ze iu

2f (z) + f

ze − iu

u2+ξ2 du − f (z)E(ξ), (3.13) where

E(ξ)  = E(ξ) =12ξ

π

π

0

du

u2+ξ2 =12

πarctg

π

ξ ≤ 2

(for the last estimate|E(ξ)| ≤(22)ξ, see, e.g., [2, page 257])

Passing to modulus, it follows that

Q ξ(f )(z) − f (z)  ≤ ξ

π

π

0

f

ze iu

2f (z) + f

ze − iu

u2+ξ2 du + f DE(ξ)

≤ ξ π

π

0

ω2(f ; u) ∂D

u2+ξ2 du + f D ·E(ξ)

≤ C ξ

π · ω2(f ; ξ) ∂D ·

π

0



1 +u

ξ

 2 1

u2+ξ2du.

(3.15)

Reasoning as in the proof of Theorem 3.1 [2, pages 257-258], we arrive at the desired estimate

ForQ ξ ∗(f )(z), we have

Q ∗ ξ(f )(z) − f (z) = ξ

π

∞ f

ze iu

2f (z) + f

ze − iu

Trang 10

which implies

Q ∗

ξ(f )(z) − f (z)  ≤ ξ

π



0

f

ze iu

2f (z) + f

ze − iu

≤ C ξ π



0

ω2(f ; u) ∂D

u2+ξ2 du = C ξ

π



0

ω2



f ; (u/ξ) · ξ

∂D

u2+ξ2 du

≤ Cω2(f ; ξ) ∂D · ξ

π



0



1 +u

ξ

 2

· 1

u2+ξ2du ≤ C ω2(f ; ξ) ∂D

(3.17)

ForR ξ(f )(z), we obtain

R ξ(f )(z) − f (z)  ≤2ξ3

π

+

−∞

f

ze iu

− f (z)



u2+ξ2  2 du

2π ξ3

 +

−∞

ω1



f ; |z| ·e iu −1

D



u2+ξ2  2 du

≤ C2ξ

3

π

 +

−∞

ω1 

f ; |u|D



u2+ξ2  2 du

≤ C2ξ

3

π



0 ω1



f ; u

ξ · ξ



D · 1

u2+ξ2  2du

≤ Cω1(f ; ξ) D2ξ

3

π



0



1 +u

ξ



· 1

u2+ξ2  2du

= Cω1(f ; ξ) D



1 +2ξ 2

π



0

u



u2+ξ2  2du



,

(3.18)

where

2ξ2

π



0

u du



u2+ξ2  2 =2ξ2

π ·1

2



ξ2

dv

v2 = ξ2

π ·1 v





ξ2= 1

which proves the estimate forR ξ(f )(z) too.

(iii) Letz1,z2∈ D be with |z1− z2| ≤ δ We get

Q ∗

ξ(f )

z1 

− Q ∗ ξ(f )

z2 ≤ ξ π

 +

−∞

f

z1e iu

− f

z2e iu

u2+ξ2 du

≤ ω1



f ;z1− z2

D

ξ π

 +

−∞

du

u2+ξ2 ≤ ω1(f ; δ) D,

(3.20)

where from passing to supremum afterz1,z2it follows thatω1(Q ∗ ξ(f ); δ) D ≤ ω1(f ; δ) D

Trang 11

Q ξ( f )

z1



− Q ξ(f )

z2 ≤ ξ π

π

− π

f

z1e iu

− f

z2e iu

u2+ξ2 du

≤ ω1



f ;z1− z2

D · ξ π

π

− π

du

u2+ξ2

≤ ω1(f ; δ) D · ξ

π

 +

−∞

du

u2+ξ2 = ω1(f ; δ) D

(3.21)

The reasonings forR ξ(f ) are similar, which proves the theorem. 

In what follows, we present some geometric properties of complex Poisson-Cauchy integrals

Theorem 3.2 (i) If f (z) =∞ k =0a k z k , z ∈ D, and T ξ(f )(z)=∞ k =0A k z k is any from Q ξ( f ),

Q ∗ ξ(f ), and R ξ(f ), then

A k  ≤  a k, ∀k =0, 1, . (3.22)

(ii) If f (z) =∞ k =1a k z k , z ∈ D, is univalent in D and f (D) is convex, then for any ξ > 0,

Q ξ(f )(z) is close-to-convex on D.

(iii) For all ξ > 0, with the notation in Section 2 , Q ∗ ξ(ᏼ)⊂ ᏼ, Rξ(ᏼ)⊂ ᏼ;

1

b1(ξ) · Q ξ

S3,b1 (ξ)



⊂ S3, 1

b1(ξ) · Q ∗ ξ

S3,b

1 (ξ)



⊂ S3, 1

c1(ξ) · R ξ



S3,c 1 (ξ)



⊂ S3, 1

b1(ξ) Q ξ



S M



⊂ S M/ | b1 (ξ)|, 1

b1(ξ) Q

ξ



S M



⊂ S M/ | b ∗1 (ξ)|, 1

c1(ξ) R ξ(S M)⊂ S M/ | c1 (ξ)|,

(3.23)

where S3,a= { f ∈ S3;| f (z)| ≤ |a|} and S B = { f ∈ A(D); | f (z)| < B, z ∈ D}.

Proof (i) With the notations in the statement ofTheorem 3.1(i), for allk =0, 1, 2, ., we

obtain

b k( ξ)  ≤2ξ

π

π

0

|cosku|

u2+ξ2 du ≤2ξ

π

π

0

du

u2+ξ2

=2ξ

π ·1

ξarctg

u ξ



π

0= 2

πarctg

π

ξ ≤1,

b ∗

k(ξ)  ≤2ξ

π ·1

ξarctg

u ξ





0 =1,

c k(ξ)  ≤4ξ3

π



0

du



u2+ξ2  2 =1,

(3.24)

which immediately implies (i)

...

The continuity of f on D implies the continuity of Q ξ(f ), Q ξ ∗(f ), and R ξ(f ) as in the< /i>

proof ofTheorem...

(for the last inequalities, see, e.g., [2, proof of Theorem 2.1(i), page 252]) 

Remark 2.2. Theorem 2.1(ii) and (iii) remain valid for f only continuous on D.

In what...

The reasonings forR ξ(f ) are similar, which proves the theorem. 

In what follows, we present some geometric properties of complex Poisson-Cauchy integrals

Ngày đăng: 22/06/2014, 21:20

🧩 Sản phẩm bạn có thể quan tâm