1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo hóa học: " Research Article Integral Means Inequalities for Fractional Derivatives of a Unified Subclass of Prestarlike Functions with Negative Coefficients" ppt

9 279 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 487,07 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Volume 2007, Article ID 97135, 9 pagesdoi:10.1155/2007/97135 Research Article Integral Means Inequalities for Fractional Derivatives of a Unified Subclass of Prestarlike Functions with N

Trang 1

Volume 2007, Article ID 97135, 9 pages

doi:10.1155/2007/97135

Research Article

Integral Means Inequalities for Fractional

Derivatives of a Unified Subclass of Prestarlike Functions

with Negative Coefficients

H ¨ Ozlem G¨uney and Shigeyoshi Owa

Received 24 May 2007; Revised 13 July 2007; Accepted 28 July 2007

Recommended by Narendra K Govil

Integral means inequalities are obtained for the fractional derivatives of orderp + λ(0 ≤

p ≤ n, 0 ≤ λ < 1) of functions belonging to a unified subclass of prestarlike functions.

Relevant connections with various known integral means inequalities are also pointed out

Copyright © 2007 H ¨O G¨uney and S Owa This is an open access article distributed un-der the Creative Commons Attribution License, which permits unrestricted use, distribu-tion, and reproduction in any medium, provided the original work is properly cited

1 Introduction

Let᏿ denote the class of (normalized) functions of the form

f (z) = z +



n =2

which are analytic and univalent in the open unit disk U = { z ∈ C:| z | < 1 } Also let᐀ denote the subclass of᏿ consisting of functions f of the form

f (z) = z −



n =2

a n z n 

a n ≥0

The Hadamard product (or convolution) of two functions f given by (1.1) andg given

by

g(z) = z +



n =2

Trang 2

is defined by

(f ∗ g)(z) = z +



n =2

We denote the subclass᏾(α,β) of ᏿ consisting of α-prestarlike functions of order β by

᏾(α,β) =f ∈᏿ :f ∗ s α

(z) ∈(β), 0 ≤ α < 1, 0 ≤ β < 1

where᏿(β) denotes the class of starlike functions of order β(0 ≤ β < 1) and s αis the well-known extremal function for᏿(α) given by

s α(z) = z(1 − z) −2(1− α) (1.6) (cf [1,2]) Letting

c n(α) =

n

k =2(k −2α)

(n −1)! (n =2, 3, ), (1.7)

s αcan be written in the form

s α(z) = z +



n =2

The class᏾(α,β) was investigated by Sheil-Small et al [3] We also denote the subclass

Ꮿ(α,β) of ᏿, which was investigated by Owa and Uralegaddi [4], by

Ꮿ(α,β) =f ∈ ᏿ : z f (z) ∈ ᏾(α,β). (1.9)

In particular, the subclasses

᏾[α,β] = ᏾(α,β) ∩᐀, Ꮿ[α,β] = Ꮿ(α,β) ∩᐀ (1.10)

were considered earlier by Srivastava and Aouf [5] Let us define the unified classᏼ(α,

β, σ) of the classes ᏾[α,β] and Ꮿ[α,β] by

ᏼ(α,β,σ) =(1− σ) ᏾[α,β] + σᏯ[α,β] (0 ≤ σ ≤1), (1.11)

so that

ᏼ(α,β,0) = ᏾[α,β], ᏼ(α,β,1) = Ꮿ[α,β]. (1.12) The unified classᏼ(α,β,σ) was studied by Raina and Srivastava [6]

Trang 3

We begin by recalling the following useful characterizations of the function class

ᏼ(α,β,σ) due to Raina and Srivastava [6]

Lemma 1.1 A function f defined by ( 1.2 ) belongs to the class ᏼ(α,β,σ) if and only if



n =2

(n − β)(1 − σ + σn)

1− β

c n(α)a n ≤1, (1.13)

for some α(0 ≤ α < 1), β(0 ≤ β < 1), σ(0 ≤ σ ≤ 1).

We continue by proving the following lemma

Lemma 1.2 Let

f1(z) = z, f k(z) = z − 1− β

(k − β)(1 − σ + σk)c k(α) z

k (k =2, 3, ). (1.14)

Then f ∈ ᏼ(α,β,σ) if and only if it can be expressed in the form

f (z) =



k =1

where λ k ≥ 0 and ∞ k =1λ k =1.

Proof Assume that

f (z) =



k =1

Then

f (z) = λ1f1(z) +



k =2

λ k f k(z)

= λ1z +



k =2

λ k

(k − β)(1 − σ + σk)c k(α) z

k

=



k =1

λ k



z −



k =2

(k − β)(1 − σ + σk)c k(α) z

k

= z −



k =2

(k − β)(1 − σ + σk)c k(α) z

k

(1.17)

Thus



k =2

λ k

(k − β)(1 − σ + σk)c k(α)

(k − β)(1 − σ + σk)c

k(α)

1− β

=



k =2

λ k =



k =1

λ k − λ1=1− λ11.

(1.18)

Trang 4

Conversely, suppose that f ∈ ᏼ(α,β,σ) Since

| a k | ≤ 1− β

(k − β)(1 − σ + σk)c k(α) (k =2, 3, ), (1.19)

we can set

λ k =(k − β)(1 − σ + σk)c k(α)

1− β (k =2, 3, ), λ1=1



k =1

λ k (1.20)

Then

f (z) = z −

k =2

a k z k

= z −

k =2

(k − β)(1 − σ + σk)c k(α) z

k

= 1



k =2

λ k



z +



k =2

λ k f k(z)

= λ1f1(z) +



k =2

λ k f k(z)

=



k =1

λ k f k(z).

(1.21)

This completes the assertion ofLemma 1.2

Lemma 1.2gives us the following

Corollary 1.3 The extreme points of ᏼ(α,β,σ) are given by

f1(z) = z, f k(z) = z − 1− β

(k − β)(1 − σ + σk)c k(α) z

We will make use of the following definitions of fractional derivatives by Owa [7] (also

by Srivastava and Owa [8])

Definition 1.4 The fractional derivative of order λ is defined, for a function f , by

D λ z f (z) =Γ(11− λ)

d dz

z 0

f (ξ)

where the function f is analytic in a simply connected region of the complex z-plane

containing the origin, and the multiplicity of (z − ξ) − λis removed by requiring log (z − ξ)

to be real when (z − ξ) > 0.

Trang 5

Definition 1.5 Under the hypothesis ofDefinition 1.4, the fractional derivative of order (n + λ) is defined, for a function f , by

D n+λ

z f (z) = d n

dz n D λ

where 0≤ λ < 1 and n =0, 1, 2, .

It readily follows from (1.23) inDefinition 1.4that

D λ z z k = Γ(k + 1) Γ(k − λ + 1) z

We will also need the concept of subordination between analytic functions and a subor-dination theorem of Littlewood [9] in our investigation

Given two functions f and g, which are analytic inU, the function f is said to be subordinate to g inUif there exists a functionw analytic inUwith

such that

f (z) = g

w(z)

We denote this subordination by

Lemma 1.6 If the functions f and g are analytic inUwith

then, for μ > 0 and z = re iθ(0< r < 1),

2π 0

g

re iθμ

dθ ≤

2π 0

f

re iθμ

2 The main integral means inequalities

We discuss the integral means inequalities for functions f in ᏼ(α,β,σ) Our main

theo-rem is contained in the following

Theorem 2.1 Let f ∈ ᏼ(α,β,σ) and suppose that



n =2

(n − p) p+1 a n ≤ (1− β) Γ(k + 1)Γ(3 − λ − p)

(k − β)(1 − σ + σk)c k(α) Γ(k + 1 − λ − p)Γ(2− p) (k ≥2) (2.1)

for 0 ≤ λ < 1, where (n − p) p+1 denotes the Pochhammer symbol defined by

Trang 6

Also let the function f k be defined by

(k − β)(1 − σ + σk)c k(α) z

If there exists an analytic function w defined by



w(z)k −1

=(k − β)(1 − σ + σk)c k(α)

1− β

Γ(k + 1 − λ − p)

Γ(k + 1)



n =2 (n − p) p+1 Φ(n)a n z n −1 (2.4)

with

Φ(n) = Γ(n − p)

Γ(n + 1 − λ − p) (0≤ λ < 1, n =2, 3, ), (2.5)

then, for μ > 0 and z = re iθ(0< r < 1),

2π

0

D p+λ

z f (z)μ

dθ ≤

2π 0

D p+λ

z f k(z)μ

(0≤ λ < 1, μ > 0). (2.6)

Proof By virtue of the fractional derivative formula (1.25) andDefinition 1.5, we find from (1.1) that

D z p+λ f (z) =Γ(2z −1− λ p − − λ p) 1



n =2

Γ(2− λ − p) Γ(n + 1) Γ(n + 1 − λ − p) a n z

n −1



=Γ(2z −1− λ p − − λ p) 1



n =2 Γ(2− λ − p)(n − p) p+1 Φ(n)a n z n −1

 , (2.7)

where

Φ(n) = Γ(n − p)

Γ(n + 1 − λ − p) (0≤ λ < 1, n =2, 3, ). (2.8) SinceΦ is a decreasing function of n, we have

0< Φ(n) ≤Φ(2)= Γ(2− p)

Γ(3− λ − p) (0≤ λ < 1, n =2, 3, ). (2.9) Similarly, from (2.3), (1.25), andDefinition 1.5, we obtain

D z p+λ f k(z) =Γ(2z −1− λ p − − λ p)

(k − β)(1 − σ + σk)c k(α)

Γ(2− λ − p) Γ(k + 1) Γ(k + 1 − λ − p) z

k −1

.

(2.10)

Trang 7

Forμ > 0 and z = re iθ(0< r < 1), we must show that

 2π

0





1



n =2

Γ(2− λ − p)(n − p) p+1 Φ(n)a n z n −1 





μ dθ

 2π

0





1

1− β

(k − β)(1 − σ + σk)c k(α)

Γ(2− λ − p) Γ(k + 1) Γ(k + 1 − λ − p) z k −

1 





μ dθ.

(2.11)

Thus, by applyingLemma 1.6, it would suffice to show that

1



n =2 Γ(2− λ − p)(n − p) p+1 Φ(n)a n z n −1

1 1− β

(k − β)(1 − σ + σk)c k(α)

Γ(2− λ − p) Γ(k + 1) Γ(k + 1 − λ − p) z

k −1.

(2.12)

If the subordination (2.12) holds true, then we have an analytic functionw with w(0) =0 and| w(z) | < 1 such that

1



n =2

Γ(2− λ − p)(n − p) p+1 Φ(n)a n z n −1

=1 1− β

(k − β)(1 − σ + σk)c k(α)

Γ(2− λ − p) Γ(k + 1) Γ(k + 1 − λ − p)



w(z)k −1

.

(2.13)

By the condition of the theorem, we define the functionw by



w(z)k −1

=(k − β)(1 − σ + σk)c k(α)

1− β

Γ(k + 1 − λ − p)

Γ(k + 1)



n =2 (n − p) p+1 Φ(n)a n z n −1 (2.14)

which readily yieldsw(0) =0 For such a functionw, we have

w(z)k −1

(k − β)(1 − σ + σk)c k(α)

1− β

Γ(k + 1 − λ − p)

Γ(k + 1)



n =2 (n − p) p+1 Φ(n)a n | z | n −1

≤ | z |(k − β)(1 − σ + σk)c k(α)

1− β

Γ(k + 1 − λ − p)

Γ(k + 1) Φ(2)



n =2 (n − p) p+1 a n

=| z |(k − β)(1 − σ +σk)c k(α)

1− β

Γ(k+1 − λ − p)

Γ(k+1) Γ(2

− p)

Γ(3− λ − p)



n =2 (n − p) p+1 a n

= | z | < 1,

(2.15)

This means that the subordination (2.12) holds true; therefore the theorem is proved

As special casep =0,Theorem 2.1readily yields

Trang 8

Corollary 2.2 Let f ∈ ᏼ(α,β,σ) and suppose that



n =2

na n  ≤ (1− β) Γ(k + 1)Γ(3 − λ)

(k − β)(1 − σ + σk)c k(α) Γ(k + 1 − λ) (k ≥2). (2.16)

If there exists an analytic function w given by



w(z)k −1

=(k − β)(1 − σ + σk)c k(α)

1− β

Γ(k + 1 − λ)

Γ(k + 1)



n =2

n Φ(n)a n z n −1 (2.17)

with

Φ(n) = Γ(n) Γ(n + 1 − λ) (0≤ λ < 1, n =2, 3, ), (2.18)

then, for μ > 0 and z = re iθ(0< r < 1),

 2π

0

D λ

z f (z)μ

dθ ≤

 2π

0

D λ

z f k(z)μ

(0≤ λ < 1, μ > 0). (2.19) Lettingp =1 inTheorem 2.1, we have the following

Corollary 2.3 Let f ∈ ᏼ(α,β,σ) and suppose that



n =2

n(n −1)a n  ≤ (1− β) Γ(k + 1)Γ(2 − λ)

(k − β)(1 − σ + σk)c k(α) Γ(k − λ) (k ≥2). (2.20)

If there exists an analytic function w given by



w(z)k −1

=(k − β)(1 − σ + σk)c k(α)

1− β

Γ(k − λ)

Γ(k + 1)



n =2 (n −1)2Φ(n)a n z n −1 (2.21)

with

Φ(n) = Γ(n −1)

Γ(n − λ) (0≤ λ < 1, n =2, 3, ), (2.22)

then, for μ > 0 and z = re iθ(0< r < 1),

 2π

0

D1+λ

z f (z)μ

dθ ≤

 2π

0

D1+λ

z f k(z)μ

(0≤ λ < 1, μ > 0). (2.23)

References

[1] P L Duren, Univalent Functions, vol 259 of Grundlehren der Mathematischen Wissenschaften,

Springer, New York, NY, USA, 1983.

[2] H M Srivastava and S Owa, Eds., Current Topics in Analytic Function Theory, World Scientific,

River Edge, NJ, USA, 1992.

[3] T Sheil-Small, H Silverman, and E Silvia, “Convolution multipliers and starlike functions,”

Journal d’Analyse Math´ematique, vol 41, pp 181–192, 1982.

Trang 9

[4] S Owa and B A Uralegaddi, “A class of functionsα-prestarlike of order β,” Bulletin of the Korean Mathematical Society, vol 21, no 2, pp 77–85, 1984.

[5] H M Srivastava and M K Aouf, “Some applications of fractional calculus operators to certain subclasses of prestarlike functions with negative coefficients,” Computers & Mathematics with

Applications, vol 30, no 1, pp 53–61, 1995.

[6] R K Raina and H M Srivastava, “A unified presentation of certain subclasses of prestar-like functions with negative coefficients,” Computers & Mathematics with Applications, vol 38,

no 11-12, pp 71–78, 1999.

[7] S Owa, “On the distortion theorems I,” Kyungpook Mathematical Journal, vol 18, no 1, pp.

53–59, 1978.

[8] H M Srivastava and S Owa, Eds., Univalent Functions, Fractional Calculus, and Their

Applica-tions, Ellis Horwood Series: Mathematics and Its ApplicaApplica-tions, Ellis Horwood, Chichester, UK;

John Wiley & Sons, New York, NY, USA, 1989.

[9] J E Littlewood, “On inequalities in the theory of functions,” Proceedings of the London

Mathe-matical Society, vol 23, no 1, pp 481–519, 1925.

H ¨ Ozlem G¨uney: Department of Mathematics, Faculty of Science and Letters, University of Dicle,

21280 Diyarbakır, Turkey

Email address:ozlemg@dicle.edu.tr

Shigeyoshi Owa: Department of Mathematics, Kinki University, Osaka 577-8502,

Higashi-Osaka, Japan

Email address:owa@math.kindai.ac.jp

... class="text_page_counter">Trang 9

[4] S Owa and B A Uralegaddi, ? ?A class of functions< /small>α -prestarlike of order β,” Bulletin of the Korean Mathematical... M Srivastava, ? ?A unified presentation of certain subclasses of prestar-like functions with negative coefficients,” Computers & Mathematics with Applications, vol 38,

no...

k −1

.

(2.10)

Trang 7

For< i>μ

Ngày đăng: 22/06/2014, 18:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm