1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo hóa học: " Research Article A Reverse Hardy-Hilbert-Type Inequality Gaowen Xi" pot

7 134 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 476,46 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Volume 2007, Article ID 79758, 7 pagesdoi:10.1155/2007/79758 Research Article A Reverse Hardy-Hilbert-Type Inequality Gaowen Xi Received 12 December 2006; Accepted 12 March 2007 Recommen

Trang 1

Volume 2007, Article ID 79758, 7 pages

doi:10.1155/2007/79758

Research Article

A Reverse Hardy-Hilbert-Type Inequality

Gaowen Xi

Received 12 December 2006; Accepted 12 March 2007

Recommended by Lars-Erik Persson

By estimating the weight coefficient, a reverse Hardy-Hilbert-type inequality is proved

As applications, some equivalent forms and a number of particular cases are obtained Copyright © 2007 Gaowen Xi This is an open access article distributed under the Cre-ative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

1 Introduction

Letp > 1, 1/ p + 1/q =1,a n ≥0,b n ≥0, and 0<

n =0a n p < ∞, 0<

n =0b q n < ∞ Then the Hardy-Hilbert inequality is as follows:



n =0



m =0

a m b n

m + n + 1 <

π

sin(π/ p)



n =0

a n p

 1/ p

n =0

b n q

 1/q

where the constant factorπ/ sin(π p) is the best possible [1]

For (1.1), Yang et al [2–6] gave some strengthened versions and extensions as follows:



n =0



m =0

a m b n

m + n + 1 <



n =0



5(

n + 3)



a2

n



n =0



5(

n + 3)



b2

n

1/2

(1.2)



n =0



m =0

a m b n

m + n + 1 <



n =0



π

sin(π/ p) − ln 2− C

(2n + 1)1+1/ p



a p n

1/ p

×



n =0



π

sin(π/ p) − ln 2− C

(2n + 1)1+1/q



b n q

1/q

,

(1.3)

Trang 2

where ln 2− C =0.1159315+(C is the Euler constant),



n =0



m =0

a m b n

(m + n + 1) λ < B



p + λ −2

q + λ −2

q



n =0

n +1

2

1− λ

a n p

1/ p

×



n =0

n +1

2

1− λ

b q n

1/q

,

(1.4)

where the constantB((p + λ −2)/ p, (q + λ −2)/q) is the best possible (2 −min{ p, q } <

λ ≤2),



n =0



m =0

a m b n

(m + n + 1) λ < B λ

p,

λ q

 

n =0

n +1

2

p −1− λ

a n p

1/ p

×





n =0

n +1

2

q −1− λ

b q n

1/q

,

(1.5)

where the constantB(λ/ p, λ/q) is the best possible (0 < λ ≤min{ p, q }),



n =0



m =0

a m b n

(m + n + 1) λ < B (r −2)t + λ

(s −2)t + λ s

 

n =0

n +1

2

p(1 − t+(2t − λ)/r) −1

a p n

1/ p

×



n =0

n +1

2

q(1 − t+(2t − λ)/s) −1

b n q

1/q

,

(1.6)

where the constantB(((r −2)t + λ)/r,((s −2)t + λ)/s) is the best possible (r > 1, 1/r +

1/s =1,t ∈[0, 1], 2min{ r, s } t < λ ≤2min{ r, s } t + min { r, s })

For the reverse Hardy-Hilbert inequality, recently, Yang [7] gave a reverse form of in-equalities (1.4), (1.5), and (1.6) forλ =2 The main objective of this paper is to establish

an extension of the above Yang’s work for 1.5 < λ < 3, by estimating the weight coefficient.

For this, we need the following expression of theβ function B(p,q) (see [8]):

B(p,q) = B(q, p) =

0

1 (1 +u) p+q u p −1du, (p,q > 0) (1.7) and the following inequality [3]:

0 f (x)dx +1

2f (0) <



m =0

f (m) <

0 f (x)dx +1

2f (0) − 1

12f (0), (1.8) wheref (x) ∈ C3[0,), and ∞ f (x)dx < ∞, (1)n f(n)(x) > 0, f(n)()=0 (n =0, 1, 2, 3)

Trang 3

2 Main results

Lemma 2.1 Let N0be the set of nonnegative integers, N the set of positive integers, andR

the set of real numbers The weight coefficient ω λ(n) is defined by

ω λ(n) =



m =0

1 (m + n + 1) λ, n ∈ N0, 1.5 ≤ λ < 3. (2.1)

Then

2(n + 1)2− λ

(λ −1)(2n + 3 − λ)



1 (λ −1)2

4(n + 1)2



< ω λ(n) < 2(n + 1)

2− λ

(λ −1)(2n + 3 − λ) . (2.2) Proof If n ∈ N0, let f (x) =1/(m + n + 1) λ,x ∈[0,) By (1.8), we obtain

ω λ(n) >

0

dx

(x + n + 1) λ+ 1

(λ −1)(n + 1) λ −1+ 1

2(n + 1) λ,

ω λ(n) <

0

1 (x + n + 1) λ dx + 1

2(n + 1) λ+ λ

12(n + 1) λ+1

(λ −1)(n + 1) λ −1+ 1

2(n + 1) λ+ λ

12(n + 1) λ+1

(2.3)

Since we find

(λ −1)(n + 1) λ −1+ 1

2(n + 1) λ



2(n + 1) λ −1(λ −1)(n + 1) λ −2 

λ −1− λ −1

2(n + 1)2,

(λ −1)(n + 1) λ −1+ 1

2(n + 1) λ+ λ

12(n + 1) λ+1



2(n + 1) λ −1(λ −1)(n + 1) λ −2

λ −1 2λ −3

6(n + 1)2− λ(λ −1)

12(n + 1)3.

(2.4) Then we obtain

1 (λ −1)(n + 1) λ −1+ 1

2(n + 1) λ = 2(n + 1)2− λ

(λ −1)(2n + 3 − λ)



1 (λ −1)2

4(n + 1)2



, 1

(λ −1)(n + 1) λ −1+ 1

2(n + 1) λ+ λ

12(n + 1) λ+1 = 2(n + 1)2− λ

(λ −1)(2n + 3 − λ)

×



1(2λ −3)(λ −1)

12(n + 1)2 − λ(λ −1)2

24(n + 1)3



.

(2.5)

Since for 1.5 ≤ λ < 3, 2(n + 1)2− λ /(λ −1)(2n + 3 − λ) > 0, (2λ −3)(λ −1)/12(n + 1)20,

λ(λ −1)2/24(n + 1)3> 0, then we have (2.2) The lemma is proved 

Trang 4

Theorem 2.2 Let 0 < p < 1, 1/ p + 1/q = 1, 1 5 ≤ λ < 3, and a n ≥ 0, b n > 0, such that 0 <



n =0((n + 1)2− λ a n p /(2n + 3 − λ)) < ∞ , 0 <

n =0((n + 1)2− λ b n q /(2n + 3 − λ)) < ∞ Then



n =0



m =0

a m b n

(m + n + 1) λ > 2

λ −1



n =0

(n + 1)2− λ

2n + 3 − λ



1 (λ −1)2

4(n + 1)2



a n p

1/ p

×



n =0

(n + 1)2− λ

2n + 3 − λ b

q n

1/q

.

(2.6)

Proof By the reverse H¨older inequality [9], we have



n =0



m =0

a m b n

(m + n + 1) λ =

n =0



m =0

a m

(m + n + 1) λ/ p · b n

(m + n + 1) λ/q





m =0



n =0

a m p

(m + n + 1) λ

1/ p

·





n =0



m =0

b n q

(m + n + 1) λ

1/q

=



m =0

ω λ(m)a p m

1/ p

·



n =0

ω λ(n)b q n

1/q

.

(2.7)

Since 0< p < 1 and q < 0, then by (2.2), we obtain (2.6) The theorem is proved

InTheorem 2.2, forλ =2, we have the following corollary 

Corollary 2.3 Let 0 < p < 1, 1/ p + 1/q = 1, and a n ≥ 0, b n > 0, such that 0 <

n =0(a p n /

(2n + 1)) < ∞ , 0 <

n =0(b n q /(2n + 1)) < ∞ Then



n =0



m =0

a m b n

(m + n + 1)2 > 2



n =0



1 1

4(n + 1)2



a p n

2n + 1

1/ p

n =0

b q n

2n + 1

1/q

. (2.8)

Remark 2.4 Inequality (2.8) is inequality [7, Inquality (8)] Hence, inequality (2.6) is an extension of Yang’s inequality [7, Inquality (8)] for 1< λ < 3.

Theorem 2.5 Let 0 < p <1, 1/ p + 1/q = 1, 1 5 ≤ λ < 3, and a n ≥ 0, such that 0 <

n =0((n+

1)2− λ a n p /(2n + 3 − λ)) < ∞ Then



n =0

(

n + 1)2− λ

2n + 3 − λ

 1− p

m =0

a m

(m + n + 1) λ

p

> 2

λ −1

p

n =0

(n + 1)2− λ

2n + 3 − λ



1 (λ −1)2

4(n + 1)2



a n p

(2.9)

Inequalities ( 2.9 ) and ( 2.6 ) are equivalent.

Proof Let

b n =



(n + 1)2− λ

2n + 3 − λ

 1− p

m =0

a m

(m + n + 1) λ

p −1

, n ∈ N0. (2.10)

Trang 5

By (2.6), we have



n =0

(n + 1)2− λ b n q

2n + 3 − λ

p

=



n =0

(

n + 1)2− λ

2n + 3 − λ

 1− p

m =0

a m

(m + n + 1) λ

p p

=



n =0



m =0

a m b n

(m + n + 1) λ

p

λ −1

p

n =0

(n + 1)2− λ

2n + 3 − λ



1 (λ −1)2

4(n + 1)2



a n p

×



n =0

(n + 1)2− λ b q n

2n + 3 − λ

p −1

.

(2.11)

Then we obtain



n =0

(n + 1)2− λ b q n

2n + 3 − λ =



n =0

(

n + 1)2− λ

2n + 3 − λ

 1− p

m =0

a m

(m + n + 1) λ

p

λ −1

p

n =0

(n + 1)2− λ

2n + 3 − λ



1 (λ −1)2

4(n + 1)2



a n p

(2.12)

If

n =0((n + 1)2− λ b q n /(2n + 3 − λ)) = ∞, then in view of

0<



n =0

(n + 1)2− λ a n p

2n + 3 − λ



1 (λ −1)2

4(n + 1)2





n =0

(n + 1)2− λ a n p

2n + 3 − λ < ∞ (2.13) and (2.12), we have



n =0

(

n + 1)2− λ

2n + 3 − λ

 1− p

m =0

a m

(m + n + 1) λ

p

> 2

λ −1

p

×



n =0

(n + 1) λ −2

2n + 3 − λ



1 (λ −1)2

4(n + 1)2



a n p;

(2.14)

if 0<

n =0((n + 1) λ −2b q n /(2n + 3 − λ)) < ∞, then by (2.6), we find



n =0



(n + 1)2− λ

2n + 3 − λ

 1− p



m =0

a m

(m + n + 1) λ

p

> 2

λ −1

p

×

n =0

(n + 1)2− λ

2n + 3 − λ



1 (λ −1)2

4(n + 1)2



a n p

(2.15)

Hence we obtain (2.9)

Trang 6

On the other hand, by the reverse H¨older inequality [9], we have



n =0



m =0

a m b n

(m + n + 1) λ =



n =0

(n + 1)(λ −2)/q(2n + 3 − λ)1/q

m =0

a m

(m + n + 1) λ



×



b n

(n + 1)(λ −2)/q(2n + 3 − λ)1/q







n =0



(n + 1)2− λ

2n + 3 − λ

 1− p



m =0

a m

(m + n + 1) λ

p 1/ p

×



n =0

(n + 1)2− λ b q n

2n + 3 − λ

1/q

.

(2.16)

Hence by (2.9), it follows that



n =0



m =0

a m b n

(m + n + 1) λ > 2

λ −1



n =0

(n + 1)2− λ a n p

2n + 3 − λ



1 (λ −1)2

4(n + 1)2

 1/ p

×



n =0

(n + 1)2− λ b n q

2n + 3 − λ

1/q

.

(2.17)

Then, (2.9) and (2.6) are equivalent The theorem is proved 

In (2.9), forλ =2, we have the following corollary

Corollary 2.6 Let 0 < p < 1, 1/ p + 1/q = 1, a n ≥ 0, 0 <

n =0(a n p /(2n + 1)) < ∞ , Then



n =0

(2n + 1) p −1



m =0

a m

(m + n + 1)2

p

> 2 p

n =0



1 1

4(n + 1)2



a n p

Inequalities ( 2.18 ) and ( 2.8 ) are equivalent.

References

[1] G H Hardy, J E Littlewood, and G P ´olya, Inequalities, Cambridge University Press,

Cam-bridge, UK, 2nd edition, 1952.

[2] B Yang and L Debnath, “Some inequalities involvingπ and an application to Hilbert’s

inequal-ity,” Applied Mathematics Letters, vol 12, no 8, pp 101–105, 1999.

[3] B Yang and L Debnath, “On a new generalization of Hardy-Hilbert’s inequality and its

applica-tions,” Journal of Mathematical Analysis and Applications, vol 233, no 2, pp 484–497, 1999 [4] B Yang, “On a strengthened version of the more precise Hardy-Hilbert inequality,” Acta

Mathe-matica Sinica Chinese Series, vol 42, no 6, pp 1103–1110, 1999.

[5] B Yang and T M Rassias, “On a new extension of Hilbert’s inequality,” Mathematical Inequalities

& Applications, vol 8, no 4, pp 575–582, 2005.

[6] B Yang, “On a new extension of Hilbert’s inequality with some parameters,” Acta Mathematica

Hungarica, vol 108, no 4, pp 337–350, 2005.

[7] B Yang, “A reverse of the Hardy-Hilbert’s type inequality,” Journal of Southwest China Normal

University (Natural Science), vol 30, no 6, pp 1012–1015, 2005.

Trang 7

[8] Z Wang and G Dunren, An Introduction to Special Function, Science Press, Beijing, China, 1979 [9] J Kuang, Applied Inequalities, Sandong Science and Technology Press, Jinan, China, 2004.

Gaowen Xi: Department of Mathematics, Luoyang Teachers’ College, Luoyang 471022, China

Email address:xigaowen@163.com

...

Trang 4

Theorem 2.2 Let < p < 1, 1/ p + 1/q = 1, ≤ λ < 3, and a n...

[3] B Yang and L Debnath, “On a new generalization of Hardy-Hilbert’s inequality and its

applica-tions,” Journal of Mathematical Analysis and Applications,... 1012–1015, 2005.

Trang 7

[8] Z Wang and G Dunren, An Introduction to Special Function,

Ngày đăng: 22/06/2014, 18:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm