Volume 2007, Article ID 36503, 8 pagesdoi:10.1155/2007/36503 Research Article On the p,q-Boundedness of Nonisotropic Spherical Riesz Potentials Mehmet Zeki Sarikaya and H¨useyin Yildiri
Trang 1Volume 2007, Article ID 36503, 8 pages
doi:10.1155/2007/36503
Research Article
On the ( p,q)-Boundedness of Nonisotropic Spherical
Riesz Potentials
Mehmet Zeki Sarikaya and H¨useyin Yildirim
Received 20 November 2006; Accepted 1 March 2007
Recommended by Shusen Ding
We introduced the concept of nonisotropic spherical Riesz potential operators generated
investi-gated
Copyright © 2007 M Z Sarikaya and H Yildirim This is an open access article distrib-uted under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
1 Introduction
Let
Rn =x =x1,x2, ,x n
:x i ∈ R, 1≤ i ≤ n
L p = L p
Ωn,λ
=
f (x) : f p =
Ωn,λ
f (x) p
dx
1/ p
< ∞
, 1≤ p < ∞
L ∞ = L ∞
Ωn,λ
=f (x) : f ∞ =ess sup
x ∈Ωn,λ
f (x) < ∞, (1.2)
| x − y | λ:=
x1− y1 1/λ1
+ x2− y2 1/λ2
+···+ x n − y n 1/λ n | λ | /n
Trang 2wherex, y ∈Ωn,λ,λ =(λ1,λ2, ,λ n),λ k > 0, k =1, 2, ,n, | λ | = λ1+λ2+···+λ n Note
t λ1 x1 1/λ1+···+ t λ n x n 1/λ n | λ | /n
| λ | /n So the nonisotropic λ-distance has the following properties:
(2)| t λ x | λ = | t | | λ | /n | x | λ,
(3)| x + y | λ ≤2(1+1/λmin )| λ | /n(| x | λ+| y | λ)
x1=ρ cosθ1
2λ1
, ,x n =ρ sinθ1sinθ2···sinθ n −1
2λ n
on anglesθ1,θ2, ,θ n −1 It is clear that ifλ1= λ2= ··· = λ n =1/2, then the λ-distance is
the Euclidean distance
We define angle
For f ∈ L(Ω n,λ), 0< α(x) < n, we will consider the following nonisotropic spherical
I λ α(x) f (x) =
Ωn,λ
| x − y | α(x) − n
The aim of this paper to show that the well-known properties of classical Riesz
Riesz potentials and theirs generalizations were studied by many authors We refer to
impor-tance of the nonisotropic kernel is that it does not have the classical triangle inequality
oper-ators fromL p(R n) toL q(R n) for 1/q =1/ p − α/n, 0 < α < n, 1 ≤ p < q < ∞[10]
n,λ f (x)K(x, y)dy, x ∈Ω2
n,λ ,
k1= sup
y ∈Ω 1
n,λ
Ω 2
n,λ
| K(x, y) | q dx
1/r
< ∞, k2= sup
x ∈Ω 2
n,λ
Ω 1
n,λ
| K(x, y) | q dy
1/q −1/r
< ∞
(1.8)
Trang 3and the following conditions are carried out: 1 ≤ p ≤ r ≤ ∞ , 1 −1/ p + 1/r =1/q, f ∈
L p(Ω1
J λ
L p(Ω 1
n,λ)≤f
L r(Ω 2
Proof Let λ, μ, ν be positive numbers such that 1/λ + 1/μ + 1/ν =1 We write
J λ(x) =
Ω 1
n,λ
f p(1/ p −1/μ)(x) f p/μ(x)K q(1/q −1/ν)(x, y)K q/ν(x, y)dy. (1.10)
J λ(x) ≤
Ω 1
n,λ
f (y) pλ(1/ p −1/μ) K(x, y) λq(1/q −1/ν) dy
1/λ
Ω 1
n,λ
f (y) p dy
1/μ
Ω 1
n,λ
K(x, y) q dy
1/ν
.
(1.11)
μ, ν in such a way
1
λ =1
p −1
μ ,
1
λ =1
q −1
ν ,
1
λ =1
J λ(x) ≤ f L p/μ p(Ω1
n,λ)
Ω 1
n,λ
K(x, y) q dy
1/ν
Ω 1
n,λ
f (y) p K(x, y) q dy
1/λ
Ω 2
n,λ
J λ(x) r
dx
≤ f r p/μ L p(Ω1
n,λ)
Ω 2
n,λ
Ω 1
n,λ
K(x, y) q dy
r/ν
Ω 1
n,λ
f (y) p K(x, y) q dy
r/λ
dx
≤ f r p/μ L p(Ω1
n,λ) sup
x ∈Ω 2
n,λ
Ω 1
n,λ
K(x, y) q dy
r/ν
Ω 2
n,λ
sup
y ∈Ω 1
n,λ
K(x, y) q
Ω 1
n,λ
f (y) p dy dx
≤ f r p/μ L p(Ω1
n,λ) f L p p(Ω1
n,λ) sup
y ∈Ω 1
n,λ
Ω 2
n,λ
K(x, y) q dx sup
x ∈Ω 2
n,λ
Ω 1
n,λ
K(x, y) q dy
r/ν
.
(1.14) Hence
J λ(x)r
L r( Ω 2
n,λ)≤ f p(r/μ+1) L p(Ω1
n,λ) sup
y ∈Ω 1
n,λ
Ω 2
n,λ
K(x, y) q dx sup
x ∈Ω 2
n,λ
Ω 1
n,λ
K(x, y) q dy
r/ν
.
(1.15)
Trang 4Takingrth roots, we have the following inequality:
J λ(x)
L r( Ω 2
n,λ)
≤ f L p(1/μ+1/r)
p( Ω 1
n,λ) sup
y ∈Ω 1
n,λ
Ω 2
n,λ
K(x, y) q dx 1/r sup
x ∈Ω 2
n,λ
Ω 1
n,λ
K(x, y) q dy
1/ν
≤ f L p(Ω1
n,λ) sup
y ∈Ω 1
n,λ
Ω 2
n,λ
K(x, y) q dx
1/r
sup
x ∈Ω 2
n,λ
Ω 1
n,λ
K(x, y) q dy
1/q −1/r
≤ f L p( Ω 1
n,λ)k1k2.
(1.16)
weak types ( p0,q0) and ( p1,q1), 1 ≤ p i,q i ≤ ∞ If 0 < t < 1 and 1/ p t =(1− t)/ p0+t/ p1,
1/q t =(1− t)/q0+t/q1, then T is of type (p t,q t ), and
T (p t,q t)≤ T 1− t
(p0 ,q0 ) T t
The following theorem gives the condition of absolute convergence of the potential
I λ α(x) f
convergent for almost every x.
Proof Let L y,θ = { x ∈Ωn,λ:y · x =cosθ },| L y,θ | = |Ωn −1,λ |sin2| λ |−1θ Hence we have
Ωn,λ
I α(x)
λ f (x) dx
≤
Ωn,λ
f (y)
| x − y | n − α(x)
λ
dy dx
=
Ωn,λ
f (y)
Ωn,λ
1
| x − y | n λ − α(x) dx dy
=
Ωn,λ
f (y) π
0
L y,θ
1
θ(2| λ | /n)(n − α(x)) dL y,θ(x) dθ
dy
=
Ωn,λ
f (y) 1
0+
π
1 L y,θ
1
θ(2| λ | /n)(n − α(x)) dL y,θ(x) dθ
dy
≤
Ωn,λ
f (y) 1
0
L y,θ
1
θ(2| λ | /n)(n − m) dL y,θ(x) dθ +
π
1
L y,θ
dL y,θ(x) dθ
dy
≤
Ωn,λ
f (y) 1
0
Ω
n −1,λ sin2| λ |−1
θ
θ(2| λ | /n)(n − m) dθ +
π
1
Ω
n −1,λ sin2| λ |−1
θdθ
dy
≤ Ωn −1,λ
Ωn,λ
f (y) 1
0
1
θ1−(2| λ | /n)m dθ+
π
1 dθ
dy ≤ M f 1< ∞
(1.18)
Trang 5Theorem 1.4 Let 0 < m ≤ α(x) < n, 1 ≤ p < ∞ Then I λ α(x) f is of type (p, p), that is,
I α(x)
λ f
where the constant M is dependent on λ, m, and n.
Proof Let
S θ f (x) = L1x,θ L
x,θ
Thus we have
S θ f
By the Minkowsky inequality for integrals, we have the following inequality:
Ωn,λ
I α(x)
λ f (x) p
dx
1/ p
=
Ωn,λ
Ω
n,λ
f (y)
| x − y | n − α(x) λ
dy
p dx
1/ p
≤
Ωn,λ
π
0
Ωn −1,λ sin2 λ |−1
θ
θ(2| λ/n)(n − α(x))
1
L x,θ L
x,θ
f (y)dL x,θ dθ
p dx
1/ p
≤ M
Ωn,λ
π
0
1
θ1−(2| λ | /n)α(x) S θ(f ) dθ p
dx
1/ p
≤ M
1
0+
π
1
Ωn,λ
1
θ(1−(2| λ | /n)α(x))p S θ(f ) p
dx
1/ p
dθ
≤ M
1
0
1
θ1−(2| λ | /n)α(x)
Ωn,λ
S θ(f ) p
dx
1/ p
dθ + M
π
1
Ωn,λ
S θ(f ) p
dx
1/ p
dθ
≤ M
1
0
1
θ1−(2| λ | /n)α(x)S θ(f )
p dθ + M
π
1
S θ(f )
p dθ
≤ M f p
1 0
dθ
θ1−(2| λ | /n)α(x)+
π
1 dθ ≤ M f p
(1.22)
Theorem 1.5 Let 0 < m ≤ α(x) < n, 1 < p ≤ r, n/ p − n/r < m Then I λ α(x) f is of type (p,r), that is,
I α(x)
λ f
where the constant M is dependent on λ, m, and n.
Trang 6Proof Let q = pr/(pr + p − r), 1/q + 1/q =1 We show thatI λ α(x) f is of type (1,q) and
I α(x)
λ f
q
≤
Ωn,λ
Ωn,λ
f (y)
| x − y | n λ − α(x) dy
q dx
1/q
≤
Ωn,λ
Ωn,λ
f (y) q
| x − y |(λ n − α(x))q dx
1/q
dy
=
Ωn,λ
f (y)
Ωn,λ
1
| x − y |(λ n − α(x))q dx
1/q
dy
≤
Ωn,λ
f (y) π
0
L y,θ
1
θ(2| λ | /n)(n − α(x))q dL y,θ(x) dθ
dy
≤
Ωn,λ
f (y) 1
0
L y,θ
1
θ(2| λ | /n)(n − m)q dL y,θ(x) dθ +
π
1
Ω
n −1,λ sin2| λ |−1
θdθ
dy
≤
Ωn,λ
f (y) 1
0
Ωn −1,λ sin2| λ |−1
θ
θ(2| λ | /n)(n − m)q dθ + M
dy
≤
Ωn,λ
f (y) Ωn −1,λ 1
0
1
θ(2| λ | /n)(n − m)q −2| λ |+1dθ + M
dy ≤ M f 1.
(1.24) Thus the last integral is convergence where
pr
pr + p − r <
n
n − m for
n
p − n
r < m,
q < n
n − m =⇒2| λ |
n (n − m)q + 1 −2| λ | < 1.
(1.25)
have
I α(x)
λ f <
Ωn,λ
f (y)
| x − y | n − α(x) λ
dy
≤
Ωn,λ
f (y) q
dy
1/q
Ωn,λ
1
| x − y |(λ n − α(x))q dy
1/q
≤ M f q
(1.26)
Therefore we have
I α(x)
λ f
This shows thatI λ α(x) f is of type (q ,∞)
Lett = q(1 −1/ p), then fromTheorem 1.2,I λ α(x) f is of type (p,r) where 1/ p =(1− t)/1+
Trang 7Theorem 1.6 Let 0 < m ≤ α(x) < n, 1 < p < r, n/ p − n/r = m Then I λ α(x) f is of type (p,r) Proof Firstly, for a constant m we will consider the α(x) = m Thus, by usingLemma 1.1
forK(x, y) = | x − y | m − n
I m
λ f
Let
Ωn,λ,x =y ∈Ωn,λ:| x − y | λ ≥1
, Ωn,λ,x =Ωn,λ \Ωn,λ,x (1.29) Then
I α(x)
λ f ≤
Ωn,λ
f (y)
| x − y | n − α(x) λ
dy ≤
Ωn,λ,x
f (y) dy +
Ωn,λ,x
f (y)
| x − y | n − m λ
dy
≤
Ωn,λ,x
f (y) dy + I m
λ f (x) ≤ M f p+I m
λ f (x).
(1.30)
Therefore we have
I α(x)
λ f
r ≤M f p+I m
λ f (x)
r ≤ M f p+I m
λ f (x)
r
ThusI λ α(x) f is of type (p,r).
References
[1] O V Besov, V P Il’in, and P I Lizorkin, “TheL p-estimates of a certain class of non-isotropically
singular integrals,” Doklady Akademii Nauk SSSR, vol 169, pp 1250–1253, 1966.
[2] ˙I C¸ınar, “The Hardy-Littlewood-Sobolev inequality for non-isotropic Riesz potentials,” Turkish
Journal of Mathematics, vol 21, no 2, pp 153–157, 1997.
[3] ˙I C¸ınar and H Duru, “The Hardy-Littlewood-Sobolev inequality for (β,γ)-distance Riesz
po-tentials,” Applied Mathematics and Computation, vol 153, no 3, pp 757–762, 2004.
[4] A D Gadjiev and O Dogru, “On combination of Riesz potentials with non-isotropic kernels,”
Indian Journal of Pure and Applied Mathematics, vol 30, no 6, pp 545–556, 1999.
[5] M Z Sarikaya and H Yıldırım, “The restriction and the continuity properties of potentials depending onλ-distance,” Turkish Journal of Mathematics, vol 30, no 3, pp 263–275, 2006.
[6] M Z Sarikaya and H Yıldırım, “On theβ-spherical Riesz potential generated by the β-distance,” International Journal of Contemporary Mathematical Sciences, vol 1, no 2, pp 85–89, 2006.
[7] M Z Sarikaya and H Yıldırım, “On the non-isotropic fractional integrals generated by the
λ-distance,” Selc¸uk Journal of Applied Mathematics, vol 7, no 1, pp 17–23, 2006.
[8] M Z Sarikaya and H Yıldırım, “On the Hardy type inequality with non-isotropic kernels,”
Lobachevskii Journal of Mathematics, vol 22, pp 47–57, 2006.
[9] M Z Sarikaya, H Yıldırım, and U M Ozkan, “Norm inequalities with non-isotropic kernels,”
International Journal of Pure and Applied Mathematics, vol 31, no 3, pp 337–344, 2006.
[10] E M Stein, Singular Integrals and Di fferentiability Properties of Functions, Princeton
Mathemat-ical Series, no 30, Princeton University Press, Princeton, NJ, USA, 1970.
Trang 8[11] Z Zhou, Y Hong, and C Z Zhou, “The (p,q)-boundedness of Riesz potential operators of
variable order on a sphere,” Journal of South China Normal University, no 2, pp 20–24, 1999
(Chinese).
[12] H Yıldırım, “On generalization of the quasi homogeneous Riesz potential,” Turkish Journal of
Mathematics, vol 29, no 4, pp 381–387, 2005.
[13] C Sadosky, Interpolation of Operators and Singular Integrals, vol 53 of Monographs and Textbooks
in Pure and Applied Math., Marcel Dekker, New York, NY, USA, 1979.
Mehmet Zeki Sarikaya: Department of Mathematics, Faculty of Science and Arts,
Kocatepe University, 03200 Afyon, Turkey
Email address:sarikaya@aku.edu.tr
H¨useyin Yildirim: Department of Mathematics, Faculty of Science and Arts,
Kocatepe University, 03200 Afyon, Turkey
Email address:hyildir@aku.edu.tr
...The following theorem gives the condition of absolute convergence of the potential
I λ α(x) f
convergent for almost every x.
Proof... f
where the constant M is dependent on λ, m, and n.
Trang 6Proof Let q =... class="text_page_counter">Trang 8
[11] Z Zhou, Y Hong, and C Z Zhou, ? ?The (p ,q)-boundedness of Riesz potential operators of< /small>
variable