1. Trang chủ
  2. » Giáo Dục - Đào Tạo

TIẾT 20-TÊN BÀI: ÔN TẬP CHƯƠNG I (tt) doc

3 398 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 168,7 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Về kiến thức: - Biết được dạng và cách giải phương trình bậc nhất, bậc hai đối với một hàm số lượng giác, phương trình bậc nhất đối với sinx, cosx... Về kỹ năng: - Giải thành thạo phươ

Trang 1

TIẾT 20-TÊN BÀI: ÔN TẬP

CHƯƠNG I (tt)

Tiết dạy: 20

Ngày dạy: ………

I.Mục tiêu:

1 Về kiến thức:

- Biết được dạng và cách giải phương trình bậc nhất, bậc hai đối với một hàm số lượng

giác, phương trình bậc nhất đối với sinx, cosx

2 Về kỹ năng:

- Giải thành thạo phương trình thuộc các dạng trên

3 Về tư duy và thái độ:

- Phát triển khả năng tư duy logic

- Chủ động phát hiện, chiếm lĩnh tri thức mới Có tinh thần hợp tác trong học tập

II Chuẩn bị của GV và HS:

1 Chuẩn bị của GV:

- Tình huống bài tập

2 Chuẩn bị của HS:

- Đồ dùng học tập

- Làm bài tập ở nhà

III Phương pháp dạy học:

- Vận dụng linh hoạt các phương pháp dạy học nhầm giúp hs chủ động, tích cực trong

phát hiện, chiếm lĩnh tri thức, trong đó phương pháp chính được sử dụng là đàm thoại,

nêu vấn đề và giải quyết vấn đề

IV Tiến trình bài day:

1 Ổn định lớp: kiểm tra sĩ số lớp

2 Kiểm tra bài cũ:

- Học sinh nhắc lại phương pháp giải các loại phương trình trên

3 Bài mới:

Hoạt động của GV Hoạt động của HS Nội dung bài học

Gợi ý: Có thể chuyển

về pt bậc nhất theo 1

hàm lượng giác ?

2 học sinh chỉ ra cách biến đổi và nêu kết quả

Bài tập 1:

a 3tan2 2x -1 = 0

6

tan 3

3 2

x

2 12

 k

x  

b 4cos²6x - 3 = 0 cos 12x = 1/2

6 36

 k

x  

Trang 2

Gợi ý: Dạng Pt ?

Đặt t = ?

Điều kiện của t?

Nghiệm thích hợp ?

Có thể chuyển về pt

theo 1 hàm lượng

giác ?

Đặt t = ?

Điều kiện của x và t?

1 học sinh chỉ ra các bước giải

Biến đổi vế pt theo tanx hay cotx Đưa về pt bậc 2 theo

Bài tập 2:

a 2sin²x + 5sinx - 3 = 0 (1)

t = sinx (1t 1) (1)  2t2 + 5 t - 3 = 0

t = -3 (loại), t = 1/2 (nhận)

2 6 5

2 6

k x

k x

b – 2tan3x + cot3x = 1 (1)

t = cot 3x (1) t2 - t -2 = 0

t = - 1, t = 2

3 2

cot 3

1

3 4

k arc

x

k x

- Gọi học sinh khá

2 2

 b

a ,

do đó:

2sin3x 5 cos3x

3( sin3x cos3x)

3(cos sin3x sin cos3x)

k2 x

Bài tập 3: 2sin3x 5cos3x3

-Gọi 2 học sinh lên

bảng giải riêng 2 câu

Học sinh thưc hiện theo yêu cầu của

GV

a)

Bài tập 4:

a) 2.sin2x  2cos2x  2 b) Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:

Trang 3

2.sin2x 2cos2x 2

1

5

24 13

24

 



b)

P sin x sinx.cosx 3.cos x   

1 sin2x cos2x 2 2

5 sin(2x ) 2 2

Do đó

2 2

5 min

; 2 2

5 maxP  P  

P sin x sinx.cosx 3.cos x   

Ngày đăng: 22/06/2014, 13:20

HÌNH ẢNH LIÊN QUAN

Bảng giải riêng 2 câu - TIẾT 20-TÊN BÀI: ÔN TẬP CHƯƠNG I (tt) doc
Bảng gi ải riêng 2 câu (Trang 2)

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w