1. Trang chủ
  2. » Luận Văn - Báo Cáo

Chương 2. Khí động học khí cụ bay

52 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Khí Động Lực Học Khí Cụ Bay
Định dạng
Số trang 52
Dung lượng 3,17 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Máy bay, tên lửa là những khí cụ bay nặng hơn không khí, có thiết bị động lực để tạo ra lực đẩy, có các cánh để tạo ra lực nâng. Mặt phẳng cơ sở: là mặt phẳng tương đối mà đa số các thành phần của KCB được bố trí đối xứng qua mặt phẳng đó. Thông thường mặt phẳng cơ sở là mặt phẳng đối xứng. Các thành phần cơ bản của KCB gồm: Thân, cánh, đuôi, thiết bị động lực, thiết bị cất hạ cánh ( thiết bị phóng), các hệ thống điều khiển, các hệ thống trang thiết bị và vũ khí. Cánh là một trong những thành phần cơ bản tạo ra lực nâng khí động để cân bằng với trọng lực và thay đổi quỹ đạo bay. Cánh được hiểu là bao gồm cả phần kéo dài của mép trước và sau vào trong thân hoặc cánh tạo bởi từ các dầm consol. Tương tự đặc trưng hình học của các bộ phận khác của KCB ta cũng hiểu như vậy.

Trang 1

Chương 2

Khí động lực học khí cụ bay

1 Kết cấu khí cụ bay

Khí cụ bay và các phần cơ bản của nó

Máy bay, tên lửa là những khí cụ bay nặng hơn không khí, có thiết bị độnglực để tạo ra lực đẩy, có các cánh để tạo ra lực nâng

Mặt phẳng cơ sở: là mặt phẳng tương đối mà đa số các thành phần của KCBđược bố trí đối xứng qua mặt phẳng đó Thông thường mặt phẳng cơ sở là mặtphẳng đối xứng

Các thành phần cơ bản của KCB gồm: Thân, cánh, đuôi, thiết bị động lực,thiết bị cất hạ cánh ( thiết bị phóng), các hệ thống điều khiển, các hệ thống trangthiết bị và vũ khí

Cánh là một trong những thành phần cơ bản tạo ra lực nâng khí động để cânbằng với trọng lực và thay đổi quỹ đạo bay Cánh được hiểu là bao gồm cả phầnkéo dài của mép trước và sau vào trong thân hoặc cánh tạo bởi từ các dầm consol.Tương tự đặc trưng hình học của các bộ phận khác của KCB ta cũng hiểu như vậy

Sải cánh: là khoảng cách giữa hai điểm cuối của cánh

Biên dạng cánh (prôfin cánh): Là mặt cắt ngang của cánh song song với mặtphẳng cơ sở KCB, trong một số trường hợp mặt cắt có thể vuông góc với méptrước của cánh tuỳ theo yêu cầu của bài toán

Dây cung cục bộ b(z): là đoạn thẳng nối hai điểm xa nhất của biên dạngcánh

Dây cung trung tâm bo: là dây cung cánh nằm trên mặt phẳng cơ sở củaKCB, nếu xét riêng cánh thì dây cung trung tâm nằm trên mặt phẳng đối xứng củacánh

Mặt phẳng cơ sở của cánh: là mặt phẳng chứa dây cung trung tâm và vuônggóc với mặt phẳng cơ sở của KCB (mặt phẳng đối xứng)

Diện tích cánh S: là diện tích hình chiếu của cánh lên mặt phẳng cơ sở của

nó Khi tính các đặc trưng khí động KCB thường dùng diện tích đặc trưng bao gồmdiện tích hai bên của cánh vói phần diện tích dưới thân S = 2S1 (hình 2.3) Trongmột số trường hợp bao gồm cả phần bồi thêm (chảy tràn thêm): S = 2 (S1 + S2)

1

Trang 2

Dây cung khí động trung bình (CAX) bA: là dây cung được quy ước (xem

Các cánh tà trước để ngăn ngừa tách dòng khỏi cánh, khi thả ra nó tạo ra khe

hở cho luồng khí thổi lên trên cánh, đồng thời nó làm thay đổi hệ toạ độ đặc trưngcủa cánh

Đôi khi chỉ ứng dụng mũi trước có thể lệch xuống được

Trang 3

Thông thường sử dụng cánh tà

và tấm sau gọi là cơ giới hoá mép saucòn sử dụng cánh tà trước và mũi lệchđược gọi là cơ giới hoá mép trướccánh

Các cánh liệng: là các cơ quanđiều khiển ngang nó dùng để nghiêngKCB quay quanh trục dọc, cánh liệngđược bố trí đối xứng hai bên phải vàtrái của cánh, khi điều khiển thì mộtbên cụp xuống còn bên kia vểnh lên,quy ước là dương khi phía bên phảicụp xuống

Trên các KCB không đuôi dọc mép sau cánh thường bố trí các cánh tà - liệng(элевол) điều khiển cả dọc và ngang; Thông thường cánh này được chia ra cácphần: phần điều khiển dọc, phần điều khiển ngang, phần điều khiển cả dọc vàngang

Tấm điều khiển: được bố trí ở bề mặt trên và dưới cánh, có thể quay hoặcdịch chuyển để điều khiển nghiêng (thay thế cánh liệng), tấm điều khiển còn có thể

để giảm quãng đường chạy và hãm đà của máy bay khi cất và hạ cánh

3

Trang 4

Thân KCB: là thành phần cơ bản để liên kết các thành phần khác như cánh,đuôi, càng…thành một thể thống nhất Thân là nơi để bố trí tổ lái, hành khách, thiết

bị động lực, nhiên liệu, các hệ thống máy móc, các tải trọng và trang bị vũ khí…Thân còn là thành phần tạo ra lực nâng đáng kể và cả lực cản

Đuôi KCB: bao gồm có đuôi đứng và đuôi ngang hoặc kết hợp tuỳ theo từng

sơ đồ, đuôi có thể bố trí phía sau (sơ đồ thông thường) hoặc phía trước (sơ đồ dạngcon vịt) Đuôi dùng để ổn định và điều khiển KCB

Thiết bị cất hạ cánh: gồm thiết bị phóng, càng, cơ giới hoá cánh, các thiết bịtăng tốc và giảm tốc

Trang 5

Thiết bị động lực: là các động cơ tên lửa, động cơ hàng không với các hệthống thiết bị để tạo ra lực đẩy cho KCB và cung cấp năng lượng cho sự làm việccủa các hệ thống trên khoang

Các hệ thống điều khiển: gồm các hệ thống thiết bị trên khoang bảo đảmđiều khiển chuyển động của KCB trong chuyến bay và chuyển động trên mặt đất

Các hệ thống trang thiết bị: gồm các thiết bị dẫn đường bay, các hệ thốngbám sát quỹ đạo, bám mục tiêu, các hệ thống bảo đảm sự sống cho tổ lái, các hệthống chống đóng băng, hệ thống bảo vệ nhiệt…tuỳ theo nhiệm vụ cụ thể và điềukiện kỹ thuật mà nó có thể khác nhau

Các hệ trục toạ độ

Hệ trục toạ độ quan hệ (liên

kết) 0XYZ: được cố định tương đối

trên KCB, gốc toạ độ 0 thường bố trí

Góc giữa trục dọc 0X và hình chiếu của véc tơ tốc độ lên mặt phẳng đốixứng 0XY gọi là góc tấn, ký hiệu α Góc tấn dương quy ước nếu hình chiếu của véc

tơ tốc độ lên trục đứng 0Y có giá trị âm (làm cho đầu KCB ngóc lên)

5

Trang 6

Góc giữa véc tơ tốc độ và mặt phẳng đối xứng 0XY gọi là góc trượt, ký hiệu

β, góc trượt dương nếu hình chiếu véc tơ tốc độ lên trục ngang dương (hướng baysang phải)

Hệ toạ độ chuẩn (pháp tuyến) 0XgYgZg: gốc toạ độ 0 trùng với gốc toạ độ của

hệ toạ độ liên kết, trục 0Yg luôn theo hướng thẳng đứng còn hướng của trục 0Xg và0Zg chọn tuỳ theo bài toán cụ thể sao cho tạo ra hệ toạ độ phải và mặt phẳng 0XgZgluôn là mặt phẳng nằm ngang

Góc giữa trục 0Xg và hình chiếu của trục dọc lên mặt phẳng nằm ngang làgóc hướng, ký hiệu ψ, ψ>0 khi từ trục 0Xg đến hình chiếu của trục dọc lên mặtphẳng nằm ngang quay quanh trục 0Yg theo chiều kim đồng hồ (nhìn theo trục0Yg)

Góc giữa trục dọc 0X và mặt phẳng nằm ngang 0XgZg gọi là góc lên xuống(chòng chành), ký hiệu q, nó có dấu dương khi làm cho đầu KCB ngóc lên

Góc giữa trục ngang 0Z và trục 0Zg khi không trượt được gọi là góc nghiêng,

ký hiệu γ (góc giữa trục đứng 0Y và mặt phẳng đứng cục bộ chứa trục dọc 0X cũng

là góc nghiêng γ, γ>0 khi nghiêng sang phải Hình 2.13

Các đặc trưng hình học Các đặc trưng hình học của cánh

Prôfil cánh (biên dạng cánh) là mặt cắt cục bộ của cánh, được cắt bởi mặtphẳng song song với mặt phẳng cơ sở của KCB Trường hợp cánh độc lập được cắtbởi mặt phẳng song song với mặt phẳng đối xứng (hình 3.1, mặt cắt A - A) Đôi khiprôfil còn được hiểu là mặt cắt vuông góc với mép trước hoặc mép sau hoặc mộtđường nào khác (hình 3.1, mặt cắt B - B)

Trang 7

Dây cung prôfil là đoạn thẳng nối hai điểm xa nhất của đường bao prôfil, kíhiệu b Trường hợp prôfil đối xứng ví dụ phần đầu dạng nêm (hình 3.2) dây cungđược tính từ điểm giữa đoạn mép sau đến điểm xa nhất của đường bao prôfil.

Đoạn thẳng nối các điểm cắt mép trước và sau cánh bởi mặt phẳng chứaprôfil cánh thì được gọi là dây cung cục bộ Ký hiệu b(z) Rõ ràng dây cung cục bộcánh là dây cung prôfil mặt cắt cánh đang được xem xét

Khi biểu diễn hình dạng prôfil người ta sử dụng hệ tọa độ vuông góc 0XYvới gốc tọa độ tại điểm trước dây cung Trục 0X hướng theo dây cung từ điểmtrước đến điểm sau, còn trục 0Y hướng lên trên Đường bao prôfil được đưa rabằng bảng hoặc giải tích Các dạng trên và dưới được đưa ra riêng biệt

Các đặc trưng hình học cơ bản của prôfil là: (hình 3.3 và 3.4)

Độ dầy tương đối c (yв yн max) /b

Tọa độ tương đối của mặt cắt mà ở đó prôfil có độ dầy lớn nhất x cx b c /

Độ lõm tương đối f (yв  yн max) / (2 ) 0b  nếu đường trung bình nằm trêndây cung; f (yв yн min) / (2 ) 0b  nếu đường trung bình nằm dưới dây cung;0

f  nếu prôfil đối xứng.

Tọa độ tương đối của mặt cắt trong đó độ lõm lớn nhất x fx f /b, (trườnghợp prôfil dạng cong chữ S) thì độ lõm được đặc trưng bằng bốn đại lượng:

fyy bfyy b  ; x f1 x f1 / ;b x f2 x f12 /b.Bán kính tương đối phần mũi  н н / b

Góc mũi nhọn prôfil tại gờ sau 2τ Các đặc trưng này đưa ra có thể là các đạilượng không thứ nguyên hoặc biểu diễn theo % dây cung

7

Trang 8

Khi biểu diễn hình dạng cánh người ta dùng các khái niệm và các đặc trungsau:

Sải cánh l – là khoảng cách giữa hai mặt phẳng song song với mặt phẳng đốixứng tiếp xúc với các điểm cuối của cánh (hình 3.1)

Dây cung cục bộ b z( ) là dây cung của prôfil tại mặt cắt z

Dây cung trung tâm b là dây cung cục bộ ở mặt phẳng đối xứng.0

Dây cung cuối b là dây cung ở mặt cắt cuối cánh; nếu cuối cánh vòng cung k

thì xác định theo hình 3.5

Trang 9

Mặt phẳng cơ sở của cánh là mặt phẳng chứa dây cung trung tâm và vuônggóc với mặt phẳng đối xứng.

Diện tích cánh S là diện tích hình chiếu của cánh lên mặt phẳng cơ sở của nó.Dây cung hình học trung bình bср S l/

Điểm n phần trăm dây cung là điểm của dây cung cục bộ nằm cách n % độdài dây cung từ điểm đầu của nó

Đường n % dây cung là đường chứa điểm n % dây cung

Góc mũi tên cục bộ ( )z là góc giữa tiếp tuyến đường 1/4 dây cung cục bộtrong mặt cắt đang xét và mặt phẳng vuông góc với dây cung trung tâm (hình 3.6);góc mũi tên cục bộ theo đường n % dây cung khý hiệu n, theo mép trước là пк,theo mép sau là зк; ( ) 0z  nếu điểm cắt của tiếp tuyến với mặt phẳng đối xứngnằm trước tiếp điểm

Góc vặn cục bộ của cánh кр( )z là góc giữa dây cung và mặt phẳng cơ sở;

кр( ) 0z

  nếu tọa độ y của điểm trước dây cung lớn hơn so với điểm sau

Góc ngang chữ V của cánh (góc vểnh) ( )z là góc giữa hình chiếu của tiếptuyến đường 1/4 dây cung lên mặt phẳng vuông góc với dây cung trung tâm và mặtphẳng cơ sở của cánh; ( ) 0z  nếu vểnh lên (tức là hình chiếu của tiếp điểm nằmcao hơn điểm cắt hình chiếu tiếp tuyến và mặt phẳng cơ sở) Nếu dây cung của tất

cả các mặt cắt nằm trên một mặt phẳng thì кр( ) 0z  còn ( )zconst

Hình dạng của cánh hình thang nhìn từ trên được xác định bằng 3 tham số:

độ dãn dài  l2 /S , độ co thắt  b b0 / k, góc mũi tên theo 1/4 dây cung  (hoặctheo đường khác n) (hình 3.7)

Các góc mũi tên của các cánh hình thang theo các đường khác nhau có cácmối liên quan sau:

пк

;1

.1

Trang 10

Trong đó: n là khoảng cách giữa điểm n % dây cung và điểm của mép trước trongphần dây cung, (0 n 1; n 0 cho mép trước và n 1 cho mép sau) Trongtrường hợp cánh tam giác có các đẳng thức sau:

Cánh ban đầu 1, trên cơ sở đóxây dựng cánh có tấm ốp gọi là cánh

cơ sở Khi biểu diễn hình học cánh códạng phức tạp ứng dung hơn ba tham

số, đối khi còn là các mối quan hệ giảitích

Khi tính toán tính ổn định tĩnh dọc và vị trí của tiêu điểm theo góc tấn người

ta sự dụng dây cung khí động trung bình (CAX), chiều dài của nó là bA Khoảngcách giữa tiêu điểm theo góc tấn và trọng tâm quan hệ đến bA ta nhận được đặc tínhphổ biến của ổn định tĩnh dọc

Tọa độ tiêu điểm được tính so với mũi của CAX và tiếp đến là chiều dài củaCAX khá ổn định được sử dụng một cách hợp lý khi so sánh vị trí của các tiêuđiểm của các cánh có hình dạng khác nhau

Tọa độ mũi và chiều dài dây cung khí động trung bình CAX được xác địnhbởi các công thức:

Trang 11

Cho cánh tam giác (hình 3.9) các công thức (2.3) được đơn giản ta nhận được:

Tọa độ x của mũi CAX và đại lượng A b của cánh mép trước gẫy khúc (hình A

3.10) được xác định theo biểu thức sau:

x x - các tọa độ mũi của các dây cung khí động trung bình; S S - các diện1, 2tích các phần 1 và 2 tương ứng

CAX của các cánh hình thang có thể tìm theo hình học như chỉ ra trên hình3.9

Các đặc trưng hình học của thân KCB

Thân là phần cơ bản của kết cấu KCB dùng để liên kết tất cả các phần củaKCB thành một thể thống nhất, để bố trí khoang lái, hành khách, các thiết bị, tảitrọng, nếu là tên lửa thì bố trí đầu tự dẫn, khoang lái, phần chiến đấu, các thiết bị,thuốc phóng, động cơ …

11

Trang 12

Thân khí cụ bay có những hình dạng khác nhau nhưng thông thường có dạngtròn xoay hoặc gần tròn xoay.

Các tham số hình học chính của thân là:

Chiều dài thân: l là kích thướpc lớn nhất của thân theo trục dọc;ф

Diện tích mặt cắt giữa thân: S là diện tích lớn nhất mặt cắt ngang thân cắtм.фbằng mặt phẳng vuông góc với trục dọc;

Đường kính tương đương lớn nhất của thân: d là đường kính của vòngф.эtròn có diện tích bằng diện tích mặt cắt ngang giữa thân,

Trang 13

Các đặc trưng hình học của đuôi và các cơ quan điều khiển về cơ bản tương

tự như các đặc trưng hình học của cánh

Đặc trưng hình học của các cánh KCB bay tốc độ cận âm và trên âm sẽ cómột số đặc điểm khác đôi chút là: độ dầy tương đối cánh mỏng hơn, mép trước vàmép sau prôfil có thể nhọn, góc xuôi của cánh lớn Những đặc điểm khác biệt đónhằm giảm bớt sức cản do sóng xung kích gây ra

2 Các đặc tính khí động của các phần tử KCB

Các đặc tính khí động của prôfil và mặt cắt cánh

Các đặc tính khí động của prôfil là các đặc tính khí động của phân tố cánhdạng hình trụ sải vô hạn và dòng tới cánh chảy bao vuông góc với mép trước (hình3.11)

Trang 14

Trong đó: Y a;X a;M z là các lực và mô men tác dụng lên phân tố cánh sải vôhạn, b là độ dài dây cung mặt cắt.сеч

Hai khái niệm trên khác nhau vì dòng đối với prôfil là dòng không gian còndòng mặt cắt là dòng song song

Khi tính độ bền cánh, xác định biến dạng cần biết tải phân bố (lực tác dụnglên một đơn vị chiều rộng cánh) Nó được xác định bằng các phương trình:

Các tải phân bố Y aсеч, X aсеч được gọi là lực nâng và lực cản của mặt cắt.

Nếu cánh không bị xoắn và prôfil đối xứng thì:

Các lực và mô men tác dụng lên cánh

Ta ký hiệu  là phân tố diện tích cánh, còn n là pháp tuyến đơn vị ngoàicánh (hình 3.13) Lực pháp tuyến tác dụng lên cánh được xác định theo biểu thức:

Trang 15

Ta quy ước rằng phần bề mặt cánh  mà ở đó góc giữa pháp tuyến ngoài n

và trục 0Y nhọn thì cos( , ) 0n Y  với bề mặt trên, nếu là góc tù thì cos( , ) 0n Y  với

bề mặt dưới Ta ký hiệu áp suất ở mặt trên là p và áp suất ở mặt dưới là в p ; Taнlưu ý rằng cos( , )n Y dв  dS đối với mặt trên và cos( , )n Y dн  dS đối với mặtdưới Từ (3.11) ta tìm:

Ở những góc tấn nhỏ c yac yc cũng được tính theo công thức này ya

Khi tính hệ số lực pháp tuyến prôfil trong công thức (2.12) cần thay

dS dxdz , S b z  và tích phân theo x từ 0 đến b, còn theo z từ z đến z + z Kếtquả nhận được:

Trang 16

Giả sử trong mối quan hệ này S b z dS dxdz  ,  và khi tích phân theo x từ

0 đến b và theo z từ z đến z + z ta nhận được công thức sau để tính hệ số lực ápsuất dọc của prôfil:

Trong đó x, y là tọa độ điểm trên bề mặt 

Ma sát thường rất nhỏ không ảnh hưởng tới mô men ngóc chúc Vì vậy ta coicông thức (2.24) xác định mô men ngóc chúc toàn phần

Lực áp suất dọc tạo ra mô men ngóc chúc tương đối nhỏ Thông thườngngười ta bỏ qua và mô men ngóc chúc toàn phần được tính theo công thức:

Trong đó b - độ dài dây cung thường là CAX

Hệ số mô men ngóc chúc của prôfil:

Theo công thức này tính cả cho hệ số mô men ngóc chúc của mặt cắt

Mô men được tạo ra bởi các lực dọc mà được bỏ qua trong các công thức từ(2.25) …(2.27) cần phải được tính đến nếu trục 0Z nằm ở khoảng cách đáng kể từmặt phẳng cơ sở của cánh

Các đặc tính khí động prôfil cánh

Ta chỉ nghiên cứu các đặc tính khí động prôfil ở những góc tấn nhỏ, khi đó

hệ số lực nâng và hệ số mô men ngóc chúc phụ thuộc tuyến tính góc tấn

Trang 17

Hệ số lực nâng: Trong chuyển động tịnh tiến ổn định hệ số lực nâng prôfilđược xác định:

tăng khi tăng độ dầy tương đối prôfil

và góc mũi nhọn của nó ở mép sau

Để xác định hệ số lực nâng đưa ra công thức sau:

Trong đó:  là nửa góc nhọn mép sau prôfil tính bằng độ

Có thể nói công thức (2.30) đưa ra giá trị cya

chính xác hơn đối với khí lýtưởng Khi đánh giá sơ bộ tính chất chịu tải của prôfil thực cho thuận tiện giả thiết2

Trang 18

Góc 0 phụ thuộc vào dạng đường trung bình và thực tế không phụ thuộcvào độ dầy prôfil Nếu prôfil đối xứng thì f x ( ) 0 thỏa mãn phương trình (2.29)

và  0 0 Trong trường hợp này đường cong c yac ya( ) đi qua gốc tọa độ Càngtăng độ cong thì 0 càng giảm và nếu cố định góc tấn độ cong tương đối dươngcàng tăng thì c càng tăng Đường thẳng lực nâng bằng 0 nằm trên dây cung thì ya

  và ngược lại (hình 3.26)

Dạng prôfil và vị trí của nó thay đối theo sải cánh thì cánh đó gọi là cánh vặnkhí động Đặc trưng bởi góc vặn khí động крa là góc giữa các đường lực nângprôfil bằng 0 ở mặt cắt đang xét và ở mặt phẳng đối xứng (hình 3.27):

крa( )z кр( )z 0( )z 0(0)

      (2.31)

Trong đó: z - tọa độ mặt cắt, кр( )z - góc vặn hình học, 0( ),z 0(0) - góc lựcnâng bằng 0 ở mặt cắt z và ở mặt phẳng đối xứng

Hệ số mô men ngóc chúc so với mép trước

Trong mối quan hệ tuyến tính với góc tấn hệ số này có thể xác định theo mộttrong các công thức sau:

Trang 19

khí động theo góc tấn); m z0 - hệ số mô men ngóc chúc khi  0,

Tiêu điểm khí động theo góc tấn

Theo định nghĩa tiêu điểm theo góc tấn nằm trên dây cung prôfil Tọa độkhông thứ nguyên của nó so với mũi prôfil được xác định bằng biểu thức:

lệch rất ít so với lý thuyết (hình 3.28)

Chảy bao êm (không va đập)

Chảy bao êm là chế độ chảy trong đó dòng chảy dồn đến bề mặt trung bình

mô hình hóa prôfil, không vòng qua mép trước và còn được chia ra dòng trên vàdưới Góc tấn và hệ số lực nâng khi đó là ở chế độ tính toán, ký hiệu p,c ya p

19

Trang 20

Khi xác định các đặc tính khí động prôfil ta đưa ra cường độ xoáy phân bốbằng dẫy yriê, trong đó vận tốc nhiễu loạn ở mép trước bề mặt trung bình môhình hóa prôfil được xác định bằng số hạng:

dòng chảy vòng mép trước Suy ra dòng chảy êm prôfil chỉ thể hiện khi A  , tức0 0

Các mối quan hệ cuối cùng xác định pc ya p trong trường hợp cho trước

phương trình đường trung bình Trong trường hợp này pc ya pcó thể không

tương ứng với chế độ tính toán thậm trí vượt ra ngoài giới hạn các giá trị Vì vậythông thường người ta giải bài toán ngược: cho trước p(hoặc c ya p) xác định hình

dạng đường trung bình bảo đảm chảy êm ở góc tấn đó (hoặc hệ số lực nâng)

Lực xả

Trang 21

Ta xét dòng chảy khí lý tưởng không bị tách dòng của phân tố cánh hình chữnhật có sải vô hạn Theo định lý Giucopxki tác dụng lên nó chỉ có lực nâng Y a.Phân tích nó ra hai thành phần Y và T tác dụng vuông góc và dọc theo dâycung hướng về trước, thành phần T gọi là lực xả, vì ta coi chất khí là lý tưởngnên lực xả là lực áp suất Hệ số là:

0

T c

21

Trang 22

Từ đó ta có biểu thức của lực cản chính diện prôfil:

Hình 3.31 đưa ra dạng phụ thuộc c vào xa c ya

Hệ số c xamin được xác định trên cơ sở lực ma sát Gần đúng bậc nhất bằng hệ

số ma sát hai phía của bản mỏng 2cFпл Nhưng sức cản ma sát prôfil khác sức cànbản mỏng vì: khác nhau đặc tính lớp biên và diện tích bề mặt Ngoài ra prôfil thửnghiệm còn có lực cản áp suất do độ nhớt Những yếu tố này thể hiện qua hệ số c:

Trang 23

Hệ số c phụ thuộc vào số Re và điểm chuyển từ chảy tầng sang chảy rối.Fпл

Hệ số c phụ thuộc vào độ dầy tương đối và vị trí điểm chuyển tiếp chảytâng sang chảy rối

Với quan điểm hệ số lực cản chính diện được xác định bởi sự ảnh hưởng của

độ nhớt và khi đưa ra khái niệm lực pháp tuyến và lực xả thì (3.69) viết dưới dạng:

Trang 24

MV a.

Nếu nó chuyển động đồng thời dọc theo mép trước với vận tốc V thì vận tốctịnh tiến khi đó là: V VnV và cánh trở thành cánh trượt với góc trượt  đượcxác định bằng tỷ số: tg V V / n

Ta đưa vào qua mép sau mặt phẳng song song với Vn và một mặt phẳngvuông góc với mặt phẳng này và song song với V, được mặt cắt Б – Б của cánh vàgọi mặt phẳng này là prôfil cánh trượt Khi góc tấn nhỏ cos n 1 ta có các đạilượng liên quan đến cánh trượt:

Trang 25

Trong đó: c - hệ số lực cản chính diện áp suất cánh trượt; xaд c - hệ số lực nâng ya

cánh trượt

Đối với khí lý tưởng dịch chuyển của cánh thẳng hình trụ dọc theo đườngsinh của nó không làm thay đổi các lực tác dụng lên nó Lực cản chính diện làthành phần của lực khí động toàn phần tác dụng ngược với hướng chuyển động tịnhtiến vì vậy:

Các hiệu quả của trượt để đánh giá ảnh hưởng độ mũi tên của cánh đến cácđặc tính khí động của nó Ta coi các nửa của cánh là các cánh trượt và giả sử:

Khi trượt cánh mũi tên các góc trượt hai nửa cánh khác nhau:

Trang 26

Kết quả là khi trượt cánh mũi tên là xuất hiện mô men nghiêng do góc mũitên: M x m q Sl x

    Khi cánh mũi tên thuận (пк 0) và ( 0) mô men âm vì

3.41) Nếu sải cánh dài vô hạn thì hệ

số lực nâng của mặt cắt được xác định

bằng quan hệ: c yaсеч cyaпр

khi chảy qua các cạnh bên nó bị giảm

xuống do kết quả của sự lệch dòng tạo

nên các dải xoáy được hội tụ từ cánh:

vận tốc thẳng đứng cảm ứng bởi dảixoáy làm giảm góc tấn và c yaсеч

Vận tốc cảm ứng bởi dải xoáy thay đổi dọc theo dây cung nên rất khó tínhtoán, nhưng ở các cánh có độ dãn dài lớn thì nó thay đổi nhỏ Vì vậy trong tính toán

ta dùng giả thuyết các mặt cắt phẳng: coi tốc độ cảm ứng bởi dải xoáy theo dâycung không đổi, ký hiệu V yсеч và coi hệ số lực nâng của mặt cắt bằng hệ số lựcnâng của prôfil mà dòng chảy bao qua nó với một góc tấn là   сеч, trong đó сеч

Đưa ra mối qua hệ c yaсеч c ya пр( ср)

Ngày đăng: 26/12/2023, 18:11

HÌNH ẢNH LIÊN QUAN

Hình dạng của cánh hình thang nhìn từ trên được xác định bằng 3 tham số: - Chương 2. Khí động học khí cụ bay
Hình d ạng của cánh hình thang nhìn từ trên được xác định bằng 3 tham số: (Trang 9)
Hình 3.31 đưa ra dạng phụ thuộc  c xa  vào  c ya . - Chương 2. Khí động học khí cụ bay
Hình 3.31 đưa ra dạng phụ thuộc c xa vào c ya (Trang 22)
Khí động pháp tuyến. Cực tuyến này cho M << 1, hình 2.26. Phương trình cực tuyến loại II ở các góc tấn nhỏ ta sử dụng phương trình thứ hai của (2.16) và thay - Chương 2. Khí động học khí cụ bay
h í động pháp tuyến. Cực tuyến này cho M << 1, hình 2.26. Phương trình cực tuyến loại II ở các góc tấn nhỏ ta sử dụng phương trình thứ hai của (2.16) và thay (Trang 49)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w