Volume 2008, Article ID 134932, 12 pagesdoi:10.1155/2008/134932 Research Article A New Subclass of Analytic Functions Defined by Generalized Ruscheweyh Differential Operator Serap Bulut
Trang 1Volume 2008, Article ID 134932, 12 pages
doi:10.1155/2008/134932
Research Article
A New Subclass of Analytic Functions Defined by Generalized Ruscheweyh Differential Operator
Serap Bulut
Civil Aviation College, Kocaeli University, Arslanbey Campus, 41285 ˙Izmit-Kocaeli, Turkey
Correspondence should be addressed to Serap Bulut,serap.bulut@kocaeli.edu.tr
Received 1 July 2008; Accepted 3 September 2008
Recommended by Narendra Kumar Govil
We investigate a new subclass of analytic functions in the open unit diskU which is defined by generalized Ruscheweyh differential operator Coefficient inequalities, extreme points, and the
integral means inequalities for the fractional derivatives of order p η 0 ≤ p ≤ n, 0 ≤ η < 1
of functions belonging to this subclass are obtained
Copyrightq 2008 Serap Bulut This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
1 Introduction
Throughout this paper, we use the following notations:
N : {1, 2, 3, },
N0: N ∪ {0},
R−1: {u ∈ R : u > −1},
R0
−1: R−1\ {0}
1.1
LetA denote the class of all functions of the form
f z z ∞
n2
which are analytic in the open unit diskU : {z ∈ C : |z| < 1}.
For f j∈ A given by
fj z z ∞
n2
Trang 2the Hadamard productor convolution f1∗f2of f1and f2is defined by
f1∗f2z z ∞
n2
Using the convolution1.4, Shaqsi and Darus 1 introduced the generalization of the Ruscheweyh derivative as follows
For f ∈ A, λ ≥ 0, and u ∈ R−1, we consider
R u λ f z z
where R λf z 1 − λfz λzf
z, z ∈ U.
If f ∈ A is of the form 1.2, then we obtain the power series expansion of the form
R u λ f z z ∞
n2
where
C u, n 1 u n−1
and where a n is the Pochhammer symbol or shifted factorial defined in terms of the Gamma function by
a n: Γa n Γa
a a 1 · · · a n − 1, if n ∈ N, a ∈ C. 1.8
In the case m∈ N0, we have
R m λ f z z z m−1f z
m
and for λ 0, we obtain uth Ruscheweyh derivative introduced in 2 , R m
0 R m
Using the generalized Ruscheweyh derivative operator R u λ, we define the following classes
Definition 1.1 LetSλ u, v; α be the class of functions f ∈ A satisfying
Re
R u
λ f z
R v
λ f z
for some 0≤ α < 1, u ∈ R0
−1, v∈ R−1, λ ≥ 0, and all z ∈ U.
Trang 3In this paper, basic properties of the classSλ u, v; α are studied, such as coefficient
bounds, extreme points, and integral means inequalities for the fractional derivative
2 Coefficient inequalities
Theorem 2.1 Let 0 ≤ α < 1, u ∈ R0
−1, v∈ R−1, and λ ≥ 0 If f ∈ A satisfies
∞
n2
where
Bn u, v, α : 1 n − 1λ {|Cu, n − 1 αCv, n| Cu, n 1 − αCv, n}, 2.2
then f ∈ Sλ u, v; α.
Proof Let2.1 be true for 0 ≤ α < 1, u ∈ R0
−1, v ∈ R−1, and λ ≥ 0 For f ∈ A, define the function F by
F z : R u λ f z
It is sufficient to show that
for z∈ U
So, we have
F F z − 1 z 1 R u λ f z − 1 αR v
λ f z
R u
λ f z 1 − αR v
λ f z
α−∞n21 n − 1λ Cu, n − 1 αCv, n a nz n−1
2 − α ∞n21 n − 1λ Cu, n 1 − αCv, n a n z n−1
∞
n21 n − 1λ |Cu, n − 1 αCv, n||a n ||z| n−1
2 − α −∞n21 n − 1λ Cu, n 1 − αCv, n |a n ||z| n−1
< α∞n21 n − 1λ |Cu, n − 1 αCv, n||a n|
2 − α −∞n21 n − 1λ Cu, n 1 − αCv, n |a n|
< 1 by 2.1.
2.5
Therefore, f ∈ Sλ u, v; α.
Trang 4Theorem 2.2 If f ∈ S λ u, v; α, then
1 n − 1λ |Cu, n − Cv, n|
n−1
u1
1 n − u − 1λ Cv, n − u|a n −u| 2.6
for n ≥ 2, with a1 1.
Proof Define the function
G z : 1
1− α
R u
λ f z
R v λ f z − α
: 1 ∞
n1
Since Re{Gz} > 0, we get
for n 1, 2,
From the definition of Gz, we obtain
R u
λ f z − αR v
λ f z
1∞
n1
nz n
So, by1.6, we have
z 1 λ
1− α Cu, 2 − αCv, 2 a2z2 1 2λ
1− α Cu, 3 − αCv, 3 a3z3 · · ·
1z2
2z3
3z4 · · ·
1 λCv, 2a2z2 1 λCv, 2a2 1z3 1 λCv, 2a2 2z4 · · ·
1 2λCv, 3a3z3 1 2λCv, 3a3 1z4 · · ·
2.10
or
z 1 λ
1− α Cu, 2 − Cv, 2 a2z21 2λ
1− α Cu, 3 − Cv, 3 a3z3 · · ·
1z2 1 λCv, 2a2 1 2 z3
1 2λCv, 3a3 1 1 λCv, 2a2 2 3 z4 · · ·
2.11
Trang 5or, equivalently,
z∞
n2
1 n − 1λ
1− α Cu, j − Cv, j a n z n
z ∞
n2
n−1
u1
1 n − u − 1λ Cv, n − ua n −u u
z n
2.12
When we consider the coefficients of znof both series in the above equality, we have
a n 1− α
1 n − 1λ Cu, n − Cv, n
n−1
u1
1 n − u − 1λ Cv, n − ua n −u u 2.13
Therefore,
|a n| ≤ 1 n − 1λ |Cu, n − Cv, n|1− α n−1
u1
1 n − u − 1λ Cv, n − u|a n −u u|
≤ 1 n − 1λ |Cu, n − Cv, n|21 − α n−1
u1
1 n − u − 1λ Cv, n − u|a n −u|,
2.14
since u | ≤ 2, u 1, 2, .
3 Extreme points
Definition 3.1 Let Sλ u, v; α be the subclass of S λ u, v; α which consists of function
f z z ∞
n2
whose coefficients satisfy inequality 2.1
Theorem 3.2 Let f1z z and
f k z z B21 − α
whereBk u, v, α is given by 2.2.
Trang 6Then f ∈ Sλ u, v; α if and only if it can be expressed in the form
f z ∞
k1
where δk ≥ 0 and∞k1δk 1.
Proof Assume that
f z ∞
k1
Then
f z δ1f1z ∞
k2
δkfk z
δ1z∞
k2
δ k
z B21 − α
k u, v, α z k
k1
δ k
z∞
k2
δ k 21 − α
Bk u, v, α z k
z ∞
k2
δk 21 − α
Bk u, v, α z k .
3.5
Thus
∞
k2
δ k 21 − α
Bk u, v, αBk u, v, α 21 − α∞
k2
δ k 21 − α1 − δ1 ≤ 21 − α. 3.6
Therefore, we have f∈ Sλ u, v; α.
Conversely, suppose that f∈ Sλ u, v; α Since
ak≤ B21 − α
we can set
δk: Bk u, v, α
21 − α ak k 2, 3, ,
δ1 : 1 −∞
k2
δ k
3.8
Trang 7f z z ∞
k2
akz k
k1
δ k
z∞
k2
δ k 21 − α
Bk u, v, α z k
δ1z∞
k2
δ k
z B21 − α
k u, v, α z k
δ1f1z ∞
k2
δkfk z
∞
k1
δkfk z.
3.9
This completes the proof ofTheorem 3.2
Corollary 3.3 The extreme points of Sλ u, v; α are given by
f1z z, fk z z B21 − α
k u, v, α z k k 2, 3, , 3.10
whereBk u, v, α is given by 2.2.
4 The main integral means inequalities for the fractional derivative
We discuss the integral means inequalities for functions f ∈ Sλ u, v; α.
The following definitions of fractional derivatives by Owa3 also by Srivastava and Owa4 will be required in our investigation
Definition 4.1 The fractional derivative of order η is defined, for a function f, by
D η z f z Γ1 − η1 d
dz
z 0
f ξ
where the function f is analytic in a simply connected region of the complex z-plane
containing the origin, and the multiplicity ofz − ξ −η is removed by requiring logz − ξ
to be real when z − ξ > 0.
Definition 4.2 Under the hypothesis ofDefinition 4.1, the fractional derivative of order p η
is defined, for a function f, by
D p z η f z d p
where 0≤ η < 1 and p ∈ N0
Trang 8It readily follows from4.1 inDefinition 4.1that
D z η z k Γk 1 − η Γk 1 z k −η 0 ≤ η < 1, k ∈ N. 4.3
We will also need the concept of subordination between analytic functions and a subordination theorem of Littlewood5 in our investigation
Definition 4.3 Given two functions f and g, which are analytic in U, the function f is said to
be subordinate to g in U if there exists a function w analytic in U with
such that
We denote this subordination by
Lemma 4.4 If the functions f and g are analytic in U with
then, for μ > 0 and z re iθ 0 < r < 1,
2π 0
|fz| μ dθ≤
2π 0
Our main theorem is contained in the following
Theorem 4.5 Let f ∈ Sλ u, v; α and suppose that
∞
n2
n − p p1an≤ B 21 − αΓk 1Γ3 − η − p
for 0 ≤ p ≤ n, k ≥ p, 0 ≤ η < 1, where n − p p1denotes the Pochhammer symbol defined by
Also let the function fk be defined by
f k z z B21 − α
Trang 9If there exists an analytic function w defined by
wz k−1: Bk u, v, αΓk 1 − η − p21 − αΓk 1 ∞
n2
n − p p1Ψna nz n−1 4.12
with
Ψn Γn 1 − η − p Γn − p , 0 ≤ η < 1, n 2, 3, , 4.13
then, for μ > 0 and z re iθ 0 < r < 1,
2π 0
D p η
z f zμ
dθ≤
2π 0
D p η
z fk zμ
Proof By means of4.3 andDefinition 4.2, we find from3.1 that
D p z η f z Γ2 − η − p z1−η−p
1∞
n2
Γ2 − η − pΓn 1
Γn 1 − η − p anz n−1
Γ2 − η − p z1−η−p
1∞
n2
Γ2 − η − pn − p p1Ψna nz n−1
,
4.15
where
Ψn Γn 1 − η − p Γn − p , 0 ≤ η < 1, n 2, 3, . 4.16
SinceΨ is a decreasing function of n, we get
0 < Ψn ≤ Ψ2 Γ3 − η − p Γ2 − p 4.17
Similarly, from4.11, 4.3, andDefinition 4.2, we have
D p z η f k z Γ2 − η − p z1−η−p
1B21 − α
k u, v, α
Γ2 − η − pΓk 1
Γk 1 − η − p z k−1
Trang 10
For μ > 0 and z re iθ 0 < r < 1, we want to show that
2π 0
1
∞
n2
Γ2 − η − pn − p p1Ψna nz n−1
μ dθ
≤
2π 0
1 B21 − αk u, v, α Γ2 − η − pΓk 1 Γk 1 − η − p z k−1
μ dθ.
4.19
So, by applyingLemma 4.4, it is enough to show that
1∞
n2
Γ2 − η − pn − p p1Ψna n z n−1≺ 1 B21 − α
k u, v, α
Γ2 − η − pΓk 1
Γk 1 − η − p z k−1.
4.20
If the above subordination holds true, then we have an analytic function w with w0 0 and
|wz| < 1 such that
1∞
n2
Γ2 − η − pn − p p1Ψna nz n−1 1 B21 − α
k u, v, α
Γ2 − η − pΓk 1
Γk 1 − η − p wz k−1.
4.21
By the condition of the theorem, we define the function w by
wz k−1 Bk u, v, αΓk 1 − η − p
21 − αΓk 1
∞
n2
n − p p1Ψna n z n−1, 4.22
which readily yields w0 0 For such a function w, we have
|wz| k−1≤ Bk u, v, αΓk 1 − η − p
21 − αΓk 1
∞
n2
n − p p1Ψna n |z| n−1
≤ |z|Bk u, v, αΓk 1 − η − p21 − αΓk 1 Ψ2∞
n2
n − p p1an
|z|Bk u, v, αΓk 1 − η − p
21 − αΓk 1
Γ2 − p
Γ3 − η − p
∞
n2
n − p p1a n
≤ |z| < 1
4.23
by means of the hypothesis of the theorem
Thus the theorem is proved
As a special case p 0, we have the following result fromTheorem 4.5
Trang 11Corollary 4.6 Let f ∈ Sλ u, v; α and suppose that
∞
n2
nan≤ 21 − αΓk 1Γ3 − ηB
k u, v, αΓk 1 − η k 2, 3, . 4.24
If there exists an analytic function w defined by
wz k−1 Bk u, v, αΓk 1 − η
21 − αΓk 1
∞
n2
with
Ψn Γn 1 − η Γn , 0 ≤ η < 1, n 2, 3, , 4.26
then, for μ > 0 and z re iθ 0 < r < 1,
2π 0
D η
z f zμ
dθ≤
2π 0
D η
z fk zμ
Letting p 1 inTheorem 4.5, we have the following
Corollary 4.7 Let f ∈ Sλ u, v; α and suppose that
∞
n2
n n − 1a n≤ 21 − αΓk 1Γ2 − ηB
k u, v, αΓk − η k 2, 3, . 4.28
If there exists an analytic function w defined by
wz k−1 B21 − αΓk 1k u, v, αΓk − η∞
n2
with
Ψn Γn − η Γn − 1 , 0 ≤ η < 1, n 2, 3, , 4.30
then, for μ > 0 and z re iθ 0 < r < 1,
2π 0
D1η
z f zμ
dθ≤
2π 0
D1η
z f k zμ
Trang 121 K A Shaqsi and M Darus, “On univalent functions with respect to K-symmetric points given by a
generalised Ruscheweyh derivatives operator,” submitted
2 S Ruscheweyh, “New criteria for univalent functions,” Proceedings of the American Mathematical Society,
vol 49, no 1, pp 109–115, 1975
3 S Owa, “On the distortion theorems I,” Kyungpook Mathematical Journal, vol 18, no 1, pp 53–59, 1978.
4 H M Srivastava and S Owa, Eds., Univalent Functions, Fractional Calculus, and Their Applications, Ellis
Horwood Series in Mathematics and Its Applications, Ellis Horwood, Chichester, UK; John Wiley & Sons, New York, NY, USA, 1989
5 J E Littlewood, “On inequalities in the theory of functions,” Proceedings of the London Mathematical
Society, vol 23, no 1, pp 481–519, 1925.
...whereBk u, v, α is given by 2.2.
Trang 6Then f ∈ Sλ...
Trang 7f z z ∞
k2
akz... η < and p ∈ N0
Trang 8It readily follows from4.1 inDefinition 4.1that
D