1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo hóa học: " Research Article Sufficient Conditions for Univalence of an Integral Operator" docx

7 225 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 469,29 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

1, 410087 Oradea, Romania 2 Department of Mathematics and Computer Science, 1 Decembrie 1918 University of Alba Iulia, str.. 11–13, 510009 Alba Iulia, Romania Correspondence should be ad

Trang 1

Volume 2008, Article ID 127645, 7 pages

doi:10.1155/2008/127645

Research Article

Sufficient Conditions for Univalence of

an Integral Operator

Georgia Irina Oros, 1 Gheorghe Oros, 1 and Daniel Breaz 2

1 Department of Mathematics, University of Oradea, str Universitatii nr 1, 410087 Oradea, Romania

2 Department of Mathematics and Computer Science, 1 Decembrie 1918 University of Alba Iulia,

str N Iorga, no 11–13, 510009 Alba Iulia, Romania

Correspondence should be addressed to Daniel Breaz, dbreaz@uab.ro

Received 27 February 2008; Accepted 24 May 2008

Recommended by Ulrich Abel

In this paper we have introduced an integral general operator For this general operator which

is a generalization of more known integral operators we have demonstrated some univalence properties.

Copyright q 2008 Georgia Irina Oros et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1 Introduction and preliminaries

Let U be the unit disk of the complex plane:

U 

z ∈ C : |z| < 1

LetHU be the space of holomorphic functions in U,

A nf ∈ HU, fz  z  a n1 z n1  · · · , z ∈ U 1.2

with A1 A, and

S 

f ∈ A : f is univalent in U

Lemma 1.1 see 1 If the function f is regular in the unit disc U,

fz  z  a2z2 · · · ,



1− |z|2zfz

fz



 ≤ 1 ∀z ∈ U, 1.4

then the function f is univalent in U.

Trang 2

Definition 1.2St Ruscheweyh 2 For f ∈ A, n ∈ N ∪ {0}, let R nbe the operator defined by

R n : A → A,

R0fz  fz,

R1fz  zfz

n  1R n1 fz  z

R n fz

 nR n fz, z ∈ U.

1.5

Remark 1.3 If f ∈ A

fz  z 

j2

then

R n fz  z 

j1

with

R n f0  0, 

R n f0

Lemma 1.4 3, Schwarz’s lemma, 4, Lemma 4.26, page 103 If the analytic function fz is

regular in U with f0  0 and |fz| < 1 for all z ∈ U, then

fz  ≤ |z|, ∀z ∈ U, 1.9

and |f0| ≤ 1.

The equality holds if and only if fz  cz, z ∈ U, |c|  1.

2 Main results

By using the Ruscheweyh differential operator given by Definition 1.2, we introduce the following integral operator

Definition 2.1 Let n, m ∈ N ∪ {0}, i ∈ {1, 2, 3, , m}, α i ∈ C Define the integral operator

If1, f2, , f m  : A m → A,

I

f1, f2, , f m



z  z

0

R n f1t

t

α1

· · · R n f m t

t

α m

where f i z ∈ A and R nis the Ruscheweyh differential operator

Remark 2.2 i For n  0, m  1, α1 1, α2 α3 · · ·  α m 0,

Trang 3

we obtain Alexander integral operator introduced in 1915 in5:

Iz 

z

0

ft

ii For n  0, m  1, α1 α ∈ 0, 1, α2 α3 · · ·  α m  0, R0fz  fz ∈ S, and we

obtain the integral operator

I α z  z

0

ft

t

α

studied in6

iii For n  1, m  1, α1  γ ∈ C, |γ| ≤ 1/4, α2 · · ·  α m  0, R1fz  zfz ∈ S, we

obtain the integral operator

F γ z  z

0



ftγ

studied in7,8

iv For n  0, m ∈ N ∪ {0}, α i ∈ C, i ∈ {1, 2, , m}, R0fz  fz ∈ S, and we obtain

the integral operator

Fz 

z

0

f1t

t

α1

· · ·

f m t

t

α m

studied in9

v For n, m ∈ N ∪ {0}, i ∈ {1, 2, , m}, α i > 0, we obtain the integral operator F m :

A m → A,

F m



f1, f2, , f m



z  z

0

R n f1t

t

α1

· · ·

R n f m t

t

α m

studied in10

vi For n  0, m  1, α1  γ, α2  · · ·  α m  0, R0fz  fz, and we obtain the

integral operator

F γ z  z

0

ft

t

γ

studied in11,12

Theorem 2.3 Let n, m ∈ N ∪ {0}, i ∈ {1, 2, , m}, α i ∈ C, f i ∈ A If



zR n f i z

R n f i z − 1



 ≤ 1, α1  α2  ···  α m  ≤ 1, z ∈ U, 2.9

then If1, f2, , f m z given by 2.1 is univalent.

Trang 4

Proof Since f i ∈ A, i ∈ {1, 2, , m}, fromRemark 1.3we have

R n f i z

z  z 

j2 C n nj−1 a j,i z j

z  1  ∞

j2

C nj−1 n a j,i z j−1 ,

R n f i z

z /  0, z ∈ U.

2.10

For z  0, we have

R n f1z

z

α1

· · ·

R n f m z

z

α m

By differentiating 2.1, we obtain

I

f1, f2, , f m



z 

R n f1z

z

α1

· · ·

R n f m z

z

α m

, z ∈ U,

I

f1, f2, , f m



0  1.

2.12 Using2.12, we obtain

log I

f1, f2, , f m



z  α1



log R n f1z − log z · · ·  α mlog R n f m z − log z, z ∈ U.

2.13

By differentiating 2.13, we have

I

f1, f2, , f m

z

I

f1, f2, , f m



z  α1

R n f

1z

R n f1z

1

z

 · · ·  α m

R n f

m z

R n f m z

1

z

, z ∈ U 2.14 and after a short calculus we obtain

zI

f1, f2, , f m



z

I

f1, f2, , f m



z α1 z

R n f1z

R n f1z − 1

 · · · α m z

R n f m z

R n f m z − 1

, z ∈ U.

2.15

We multiply the modulus of2.15 by 1 − |z|2 and we obtain



1− |z|2zI

f1, f2, , f m



z

I

f1, f2, , f m



z





1− |z|21 z

R n f1z

R n f1z − 1

 · · ·  α m

zR n f

m z

R n f m z − 1





≤1− |z|2 α1 z

R n f1z

R n f1z − 1



  ··· α m z

R n f m z

R n f m z − 1





≤α1  ···  α m1−z2 ≤ α1  ···  α m  ≤ 1.

2.16

From Lemma A, we have If1, f2, , f m z ∈ S.

Trang 5

Remark 2.4 i For n  0, R n f i z  f i z ∈ S, we obtainTheorem 2.3from9.

ii For α i ∈ R, α i > 0,Theorem 2.3can be rewritten as follows

Corollary 2.5 Let n, m ∈ N ∪ {0}, i ∈ {1, 2, , m}, α i > 0 with α1 α2 · · ·  α m ≤ 1 If f i ∈ A

satisfy



zR n f i z

R n f i z − 1



 ≤ 1, z ∈ U, 2.17

then the integral operator given by2.1 is univalent.

Theorem 2.6 Let n, m ∈ N ∪ {0}, i ∈ {1, 2, , m}, α i ∈ C If f i ∈ A satisfy

i |α1|  · · ·  |α m | ≤ 1/3,

ii |R n f i z| ≤ 1,

iii |z2R n f i z/R n i f i z2− 1| < 1

for all z ∈ U, then the integral operator given by 2.1 is univalent.

Proof Using2.14, we obtain







z

I

f1, , f m



z

If1, , f m



z









α1



z

R n f1z

R n f1z − 1





  α m



z

R n f m z

R n f m z − 1





. 2.18

We multiply2.18 by 1 − |z|2, use Schwarz’s lemma, and obtain



1− |z|2zTz

Tz





1− |z|2α1 zR n f1z

R n f1z − 1



  ··· 1− |z|2α m z

R n f m z

R n f1z − 1





1− |z|2α1 z

R n f1z

R n f1z



 1− |z|2α1  ···  1 − |z|2α m z

R n f m z

R n f1z





1− |z|2α m

1− |z|2α1 z

R n f1z

R n f1z



  ··· zR n f m z

R n f1z



 1− |z|2α1  ···  α m

1−z2 α1z2

R n f1z



R n f1z2



R n f1

|z|  · · · α mz2

R n f m z



R n f m z2



R n f m

|z|

1− |z|2α1  ···  α m

Trang 6

≤1− |z|2 α1z2

R n f1z



R n f1z2



  ··· α mz2

R n f m z



R n f m z2



 1− |z|2α1  ···  α m

1− |z|2 α1z2

R n f1z



R n f1z2



 −α1  α1

 · · · 1− |z|2 α m z2

R n f m z



R n f m z2



 −α m   α m 

1− |z|2α1  ···  α m

1− |z|2 α1z2

R n f1z



R n f1z2 − 1

  ··· α mz2

R n f m z



R n f m z2 − 1



1− |z|2α1  ···  α m   1 − |z|2α1  ···  α m

≤1− |z|2α1  α1  ···  α m   21 − |z|2α1  ···  α m

 31− |z|2α1  ···  α m

≤ 3α1  ···  α m.

2.19 From2.19 and condition i, we have



1− |z|2zFz

Fz



for all z ∈ U.

By Lemma A, it follows that the integral operator If1, f2, , f m z is univalent.

Remark 2.7 For n  0, m  1, α1 α ∈ C, |α| ≤ 1/3, α2 · · ·  α m 0, the result was obtained

in11, Theorem 1

For α i ∈ R, α i > 0,Theorem 2.6can be rewritten as follows

Corollary 2.8 Let n, m ∈ N ∪ {0}, i ∈ {1, 2, , m}, α i > 0 If f i ∈ A satisfy

i α1 α2 · · ·  α n ≤ 1/3,

ii |R n f i z| ≤ 1,

iii |z2R n f i z/R n f i z2− 1| < 1

for all z ∈ U, then the integral operator given by 2.1 is univalent.

References

1 J Becker, “L¨ownersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen,”

Journal f ¨ur die reine und angewandte Mathematik, vol 255, pp 23–43, 1972.

2 St Ruscheweyh, “New criteria for univalent functions,” Proceedings of the American Mathematical

Society, vol 49, no 1, pp 109–115, 1975.

Trang 7

3 Z Nehari, Conformal Mapping, Dover, New York, NY, USA, 1975.

4 P Hamburg, P Mocanu, and N Negoescu, Analiz˘a matematic˘a (Funct¸ii complexe), Editura Didactic˘a s¸i

Pedagogic˘a, Bucures¸ti, Romania, 1982.

5 J W Alexander, “Functions which map the interior of the unit circle upon simple regions,” Annals of

Mathematics, vol 17, no 1, pp 12–22, 1915.

6 S S Miller, P T Mocanu, and M O Reade, “Starlike integral operators,” Pacific Journal of Mathematics,

vol 79, no 1, pp 157–168, 1978.

7 Y J Kim and E P Merkes, “On an integral of powers of a spirallike function,” Kyungpook Mathematical

Journal, vol 12, pp 249–252, 1972.

8 N N Pascu and V Pescar, “On the integral operators of Kim-Merkes and Pfaltzgraff,” Mathematica,

vol 3255, no 2, pp 185–192, 1990.

9 D Breaz and N Breaz, “Two integral operators,” Studia Universitatis Babes¸-Bolyai Mathematica, vol 47,

no 3, pp 13–19, 2002.

10 G I Oros and G Oros, “A convexity property for an integral operator F m,” in preparation.

11 V Pescar and S Owa, “Sufficient conditions for univalence of certain integral operators,” Indian Journal

of Mathematics, vol 42, no 3, pp 347–351, 2000.

12 V Pescar, “On some integral operations which preserve the univalence,” The Punjab University Journal

of Mathematics, vol 30, pp 1–10, 1997.

... · ·  α m 0,

Trang 3

we obtain Alexander integral operator introduced in 1915 in5:

Iz... given by 2.1 is univalent.

Trang 4

Proof Since f i ∈ A, i ∈ {1, 2, ,... m z ∈ S.

Trang 5

Remark 2.4 i For n  0, R n f i

Ngày đăng: 22/06/2014, 06:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm