1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo hóa học: "Research Article On the Generalized Favard-Kantorovich and Favard-Durrmeyer Operators in Exponential Function Spaces" ppt

12 360 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 529,56 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Volume 2007, Article ID 75142, 12 pagesdoi:10.1155/2007/75142 Research Article On the Generalized Favard-Kantorovich and Favard-Durrmeyer Operators in Exponential Function Spaces Grzegor

Trang 1

Volume 2007, Article ID 75142, 12 pages

doi:10.1155/2007/75142

Research Article

On the Generalized Favard-Kantorovich and Favard-Durrmeyer Operators in Exponential Function Spaces

Grzegorz Nowak and Aneta Sikorska-Nowak

Received 18 January 2007; Revised 12 June 2007; Accepted 14 November 2007

Recommended by Ulrich Abel

We consider the Kantorovich- and the Durrmeyer-type modifications of the generalized Favard operators and we prove an inverse approximation theorem for functions f such

thatw σ f ∈ L p(R), where 1 ≤ p ≤ ∞andw σ(x) =exp (− σx2),σ > 0.

Copyright © 2007 G Nowak and A Sikorska-Nowak This is an open access article dis-tributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is prop-erly cited

1 Preliminaries

Let

L p,σ(R) =f :w σ f

be the weighted function space, wherew σ(x) =exp (− σx2),σ > 0,

 g  p =



−∞

g(x)p

dx

 1/ p

if 1≤ p < ∞,

 g  ∞ =essup

x ∈ R

We define the generalized Favard operatorsF nfor functions f : R → R by

F n f (x) =

k =−∞

f (k/n)p n,k(x; γ) (x ∈ R, n ∈ N), (1.3)

Trang 2

whereN = {1, 2, },

p n,k(x; γ) = 1

nγ n √

2πexp 1

2 2

n

k

n − x

2

(1.4)

and γ =(γ n)∞ n =1 is a positive sequence convergent to zero (see [1]) In the case where

γ2

n = ϑ/(2n) with a positive constant ϑ, F n become the known Favard operators intro-duced by Favard [2] Some approximation properties of the classical Favard operators for continuous functions f on R are presented in [3,4] Some approximation properties of their generalization can be found, for example, in [1,5] Denote byF n ∗the Kantorovich-type modification of operatorsF n, defined by

F n ∗ f (x) = n

k =−∞

p n,k(x; γ)

(k+1)/n

k/n f (t)dt (x ∈ R, n ∈ N), (1.5) and byF nthe Durrmeyer-type modification of operatorsF n

F n f (x) = n

k =−∞

p n,k(x; γ)



−∞ p n,k(t; γ) f (t)dt (x ∈ R, n ∈ N), (1.6) where f ∈ L p,σ(R) Some estimates concerning the rates of pointwise convergence of the

operatorsF n ∗ f and F n f can be found in [6,7].

Recently, several autors investigated the conditions under which global smoothness of

a functionf , as measured by its modulus of continuity ω( f ; ◦), is retained by the elements

of approximating sequences (L n f ) (see, e.g., [8,9]) For example, Kratz and Stadtm¨uller considered in [10] a wide class of discrete operatorsL nand derived estimates of the form

ω L n f ; t

≤ Kω( f ; t) (t > 0), (1.7) with a positive constantK independent of f , n, and t For bounded functions f ∈ C(R)

and operatorsF nsatisfying

γ2

11

2π

2log 2, n2γ2

n ≥1

2π

they obtained the inequality

ω(F n f ; t) ≤140ω( f ; t) + 16π · t  f  (t > 0), (1.9) where f  =sup{| f (x) |:x ∈ R }

Forbounded functions f ∈ C m(R) = { f :  w m f  ∞ < ∞},w m(x) =(1 +x2m)1,m ∈ N

and for operatorsF nsatisfying2

n ≥ c > 0 for all n ∈ N, Pych-Taberska [5] obtained the inequality

ω2 F n f ; t

m ≤ K

(1 +t2)ω2(f ; t) m+t2 f  m (0< t ≤ t0) (1.10) for alln ∈ N, n ≥ n cwheren c ∈ N and K is a constant.

Trang 3

In this paper, we obtained an analogous inequality for therth weighted modulus of smoothness of the function f ∈ L p,σ(R), σ > 0, 1 ≤ p ≤ ∞,

ω r(f ; t) σ,p =sup

0<h ≤ t

w σΔr

where

Δr

h f (x) =

r

i =0



r i



(1)i f x + h r/2 − i

Namely, suppose that (γ n) is a positive null sequence satisfying nγ r/2+1

c max n ∈ N { γ r/2 −1

n } > 0 for all n ∈ N and σ1> σ > 0 Then there exist positive constants,

K, K1, such that for alln ≥ K1and for arbitrary positive numbert0

ω r L n f , t

σ1 ,p ≤ K

(1 +t2)ω r(f , t) σ,p+t rw σ f

p 0< t ≤ t0



whereL ndenotes the Favard-Kantorovich operator or the Favard-Durrmeyer operator Throughout the paper, the symbolsK(σ, σ1, ), K j(σ, σ1, ) ( j =1, 2, ) will mean

some positive constants, not necessarily the same at each occurrence, depending only on the parameters indicated in parentheses

2 Preliminary results

Letγ =(γ n)∞ n =1be a positive sequence and let2

n ≥ c for all n ∈ N, with a positive

abso-lute constantc As is known [5], forv ∈ N0= {0} ∪ N, n ∈ N, x ∈ R,

k =−∞



k n − x

v p n,k(x; γ) ≤15A c 2

e

v/2

(2v)!γ v

whereA c =max{1, (22)1} A simple calculation and the known Schwarz inequality lead to



−∞



k n − t

v p n,k(t; γ)dt ≤(2v)!! γ

v n

n k ∈ Z =0,±1,±2, .

Let us choosen ∈ N, j ∈ N0and let us write

G ∗ n, j f (x) = n 

k =−∞ p n,k(x; γ) k

n − x

j (k+1)/n k/n f (t)dt, (2.3)

G n, j f (x) = n

k =−∞

p n,k(x; γ) k

n − x

j 

−∞ p n,k(t; γ) f (t)dt, (2.4)

where f ∈ L p,σ(R), 1 ≤ p ≤ ∞, σ > 0 Obviously, G ∗ n,0 f (x) = F n ∗ f (x) and G n,0 f (x) =

F n f (x).

Trang 4

Lemma 2.1 Let γ =(γ n)∞ n =1be a positive sequence convergent to 0 and let nγ2

n ≥ c for all

n ∈ N, with a positive absolute constant c Then for j ∈ N0, ∈ L p,σ(R), σ > 0, 1 ≤ p ≤ ∞ , and σ1> σ,

w σ

1G ∗ n, j f

p ≤15A cexp σ1 σ + σ1



σ1− σ 2j



!2j/2 γ j

nw σ f

for all n ∈ N such that γ2

n ≤(σ1− σ)/(4σ(σ + σ1)),

w σ

1G n, j f

p ≤30A c

(2j)!2 j/2 γ j

nw σ f

for all n ∈ N such that γ n ≤max{(σ1− σ)/(2 √

σ(σ + σ1)); (√ σ

1− σ)/( √

2(σ + σ1))} Proof In view of definition (2.3),

exp − σ1x2 

| G ∗ n, j f (x) | ≤ n

k =−∞

exp − σ1x2 

p n,k(x; γ)

k n − x

j

×exp σ( | k |+ 1 2

/n2  (k+1)/n k/n exp − σt2 

| f (t) | dt.

(2.7)

Using the inequality

(u + v)2≤ σ + σ1

2+σ + σ1

σ1− σ v

we can easily observe, that

p n,k(x; γ) exp − σ1x2 

exp σ k + 1

n

2

≤ √2 exp σ1(σ + σ1)

σ1− σ

p n,k x; √

2 

,

p n,k(x; γ) exp − σ1x2 

n

2

≤ √2 n,k x; √

2 

,

(2.9)

forn ∈ N such that γ2

n ≤(σ1− σ)/(4σ(σ + σ1)) (see [9]), where the symbol

2γ means

the sequence (

2 n)∞ n =1 Therefore,

exp (− σ1x2)G ∗

n, j f (x)  ≤exp



σ1 σ + σ1



σ1− σ



2n

k =−∞

p n,k x; √

2 

×

n k − x

j(k+1)/n

k/n exp − σt2 

| f (t) | dt.

(2.10)

From (2.2), we have

w σ

1G ∗ n, j f

1exp σ1 σ + σ1



σ1− σ 2j



!!(

2)j+1 γ n jw σ f

Trang 5

Instead, forp = ∞, from (2.1) it follows that

w σ

1G ∗ n, j f

∞ ≤ √2 exp σ1 σ + σ1



σ1− σ



w σ f

essup

x ∈ R



k =−∞

p n,k x; √

2 k

n − x

j

2A cexp σ1 σ + σ1



σ1− σ



2j 2j

!γ j

n  w σ f  ∞

(2.12) Finally, by Riesz-Thorin theorem, we have (2.5)

In view of definition (2.4) and the inequality

p n,k(x; γ)p n,k(t; γ) exp ( − σ1x2) exp (σt2)2 n,k(x; √

2γ)p n,k(t; √

forn ∈ N such that γ n ≤max{(σ1− σ)/(2 √

σ(σ + σ1));

σ1− σ/( √

2(σ + σ1))}(see [6]),

we have

exp − σ1x2 G n, j f (x)

2n

k =−∞

p n,k x; √

2 k

n − x

j−∞ ∞ exp − σt2 

p n,k 2t; γf (t)dt. (2.14) Applying (2.1) and (2.2), we get

 w σ1G n, j f 130A c

(2j)!!γ j

n2j/2  w σ f 1,

 w σ1G n, j f  ∞ ≤30A c(2j)!γ j

n2j/2  w σ f  ∞

(2.15)

Finally, by Riesz-Thorin theorem, we have (2.6)

Further, forδ > 0, x ∈ R, and r ∈ N we define Stieklov function of f

f(δ,2r)(x) = 1

δ2r

2



2rδ/2

− δ/2 ···

δ/2

− δ/2

r

i =1



2r

r − i



(1)i −1f x + i t1+···+t2r



dt1··· dt2r

(2.16)



Lemma 2.2 For all r =1, 2, , 0 < δ ≤ 1, σ1> σ > 0, 1 ≤ p ≤ ∞ , and x ∈ R,

w σ

1f((δ,2r) r) 

p ≤ K r, σ, σ1

1

δ r ω r(f ; δ) σ,p, (2.17)

w σ

1 f(δ,2r) − f

p ≤ K r, σ, σ1



ω r(f ; δ) σ,p (2.18)

Proof It is easy to see by induction that

f((δ,2r) r) (x) =2

2r r

 r

i =1 (1)i −1



2r

r − i



1 (iδ)2r

×

iδ/2

− iδ/2 ···

iδ/2

− iδ/2Δr

iδ f x + u1+···+u r

du1··· du r

(2.19)

Trang 6

Letσ2=(2σ1+σ)/3 In view of the inequality

exp

− σ1x2+σ2(x + u)2

σ1− σ2u2

where 0< δ ≤1 andu = u1+···+u r, (u ≤ r2/2), we have

w σ

1f((δ,2r) r) 

p ≤2

2rexp σ1σ2

σ1− σ2

r4 4

r

i =1



2r

r − i



1 (iδ) r  w σr

iδ f  p (2.21)

Applying the Minkowski inequality and the fact that for 0≤ l i ≤ i −1 (0≤ i ≤ r), 0 < h ≤

1,

exp − σ2x2+σ x + h l1+···+l r − r(i −1)

2

2

σ2− σ

r(i −1) 2

2

, (2.22)

we obtain

w σ

r

iδ f

p

| h |≤ δ



−∞



exp − σ2x2  i −1

l1=0

···

i −1

l r =0

Δr

h f x+h l1+···+l r − r(i −1)

2



p dx

 1/ p

σ2− σ

r2(i −1)2 4

i r ω r(f ; δ) σ,p

(2.23)

So (2.17) is evident It is easy to see that

f(δ,2r)(x) − f (x) =(1)r −

1

δ2r

1



2rδ/2

− δ/2 ···

δ/2

− δ/2Δ2r

t1 +···+t2r f (x)dt1··· dt2r (2.24)

Lemma 2.3 Suppose that γ =(γ n)∞ n =1 is a positive sequence convergent to 0 and that

nγ r/2+1

n ≥ cK(r), where r ∈ N, r ≥ 2, K(r) =maxn ∈ N { γ r/2 −1

n } , c is a positive absolute con-stant and let a r = 1 for even r and a r = 2 for odd r Then for f ∈ L p,σ(R), σ > 0, 1 ≤ p ≤ ∞ and σ1> σ, we have

w σ

1 F n ∗ f (r)

(n/a r)r F n ∗Δr

a r /n f

p ≤ K(σ, σ1,c, r)w σ f

for all n ∈ N such that γ2

n ≤(σ1− σ)/(4σ(σ + σ1)) and nγ n > 4a2

r r2, and

w σ

1 F n f (r)

(n/a r)r F nΔr

a r /n f

p ≤ K(σ, σ1,c, r)w σ f

for all n ∈ N such that γ n ≤ max{(σ1− σ)/(2 √

σ(σ + σ1));

σ1− σ/( √

2(σ + σ1))} and

nγ n > r2/4.

Trang 7

Proof We consider an even r Let r =2r1,r1∈ N, x ∈ R Then

n r F n ∗ Δr

1/n f (x)

= n2r1 +1

k =−∞

p n,k(x; γ)

2r1

i =0



2r1

i



(1)i

 (k+r1− i+1)/n

(k+r1− i)/n f (t)dt

= n2r1 +1

r 11

i =0



2r1

i



(1)i

×

k =−∞

p n,k −(r1− i)(x; γ) + p n,k+(r1− i)(x; γ) (k+1)/n

k/n f (t)dt

+n2r1 +1

k =−∞

⎝2r1

r1

⎠(1)r1p n,k(x; γ)

 (k+1)/n k/n f (t)dt.

(2.27)

It is easy to see that

p n,k −(r1− i)(x; γ) + p n,k+(r1− i)(x; γ)

= p n,k(x; γ)



exp r1− i

2

n

k

n − x

(1− i)2

2n2γ2

n

+exp − r1− i

2

n

k

n − x

(1− i)2

2n2γ2

n



= p n,k(x; γ)

l =1

(1)l

l!

[ l/2]

j =0



l

2j



22j+1 − l k

n − x

2j

n2j −2l γ −2l

n (1− i)2l −2j+ 2p n,k(x; γ).

(2.28) Consequently, using definition (2.3), we get

n r F n ∗ Δr

1/n f (x)

=

2r1

l =1

[ l/2]

j =0

n2(r1 +j − l) γ − n2l (1)l22j+1 − l

2j

! l −2j

!

×

r 11

i =0



2r1

i



(1)i r1− i 2l −2j

G ∗ n,2 j f (x)

+

l =2r1 +1

[ l/2]

j =0

n2(r1 +j − l) γ − n2l (1)l22j+1 − l

2j

! l −2j

!

×

r 11

i =0



2r1

i



(1)i r1− i 2l −2j

G ∗ n,2 j f (x)

= S n,1 f (x) + S n,2 f (x).

(2.29)

Trang 8

In view of (2.5) and using Stirling formula, we obtain

w σ

1S n,2 f

p ≤ K1 σ, σ1,cw σ f

p4r1n2r1

l =2r1 +1

r12l

n2l γ2l

n2l

[ l/2]

j =0



(4j

!2j

2j

! l −2j

!n

2j γ2j

n4j r12j

≤ K2 σ, σ1,c, rw σ f

p n2r1

l =2r1 +1

r2/2) l

(n2γ2

n)l

[ l/2]

j =0

n2γ2nj

64j

≤ K3 σ, σ1,c, rw σ f

p

16r2 2r1 +1

n2γ2r1 +2

n

+n2r1

l =2r1 +2

16r2

nγ n

l

.

(2.30) Assuming (16r2)/(nγ n)< 1 and using the condition nγ r1 +1

n ≥ cK(r), we get

 w σ1S n,2 f  p ≤ K4(σ, σ1,c, r)  w σ f  p (2.31) Now observe that

r 11

i =0



2r1

i



(1)i r1− i 2s

=

0 if 0< s < r1, (2r1)!/2 ifs = r1. (2.32)

The equality follows simply from properties of finite differences since the left-hand side

of the equation is a half of the finite difference of the polynomial (r1− x)2s Therefore,

S n,1 f (x) =

2r1

l = r1

(1)l22j+1 − l

l!n2l −2j −2r1γ2l

n



l

2j

r11

i =0



2r1

i



(1)i r1− i 2l −2j

G ∗ n,2 j f (x)

=

r1

l =0

l 1

j =0

(1)r1 +l22j+1 − l − r1

(1+l)!n2l −2j γ2l+2r1

n



r1+l

2j

r 11

i =0



2r1

i



(1)i r1− i 2r1 +2l −2j

G ∗ n,2 j f (x)

+

r1

l =0

(1)2r1− l

γ4r12l n

2r1



!

2l l! 2r12l

!G

∗ n,2 j f (x).

(2.33)

It is easy to see, by the method of induction, that

p n,k(v)(x; γ) = p n,k(x; γ)

[ v/2]

i =0

v!( −1)i (v −2i)!(2i)!!

1

γ2v −2i n

k

n − x

v2i

Therefore,

S n,1 f (x) =

r1

l =0

l 1

j =0

(1)r1 +l22j+1 − l − r1

r1+l

!n2l −2j γ2l+2r1

n



r1+l

2j

r 11

i =0



2r1

i



(1)i r1− i 2r1 +2l −2j

G ∗ n,2 j f (x)

+ F n ∗ f (x) (2r1 )

.

(2.35)

Trang 9

Consequently, from (2.29)

(F ∗

n f )(2r1 ) (x) − n2r1F n ∗Δ2r1

1/n f (x)

≤ K5(r)

r 11

j =0

r1

l = j+1

n2j

(nγ n)2l γ2r1

n

G ∗ n,2 j f (x)+S n,2 f (x). (2.36)

The conditionnγ r1 +1

n ≥ cK(r) and the boundedness of the sequence (γ n) lead to

F n ∗ f (2r1 )

(x) − n2r1F n ∗Δ2r1

1/n f (x)  ≤ K6(r, c)

r 11

j =0

γ − n2jG ∗ n,2 j f (x) |+S n,2 f (x). (2.37)

Collecting the results we get estimate (2.25) for evenr, immediately.

Now, we will prove inequality (2.25) for oddr Namely, let r =2r2+ 1,r2∈ N, x ∈ R.

Then

n r F n ∗ Δr

2/n f (x)

= n2r2 +2

r2

i =0

k =−∞



2r2+ 1

i



(1)i

× p n,k −(2r2 +12i)(x; γ) − p n,k+(2r2+12i)(x; γ) (k+1)/n

k/n f (t)dt.

(2.38)

It is easy to see that

p n,k −(2r2 +12i)(x; γ) − p n,k+(2r2+12i)(x; γ)

= p n,k(x; γ)

l =1

(1)l+1

l!

[(l − 1)/2]

j =0



l

2j + 1



22j+2 − l k

n − x

2j+1 n2j+1 −2l

γ2l

n 2r2+ 12i 2j −2l+1

(2.39) Consequently,

n r F n ∗r

2/n f (x)) =

2 r2 +1

l =1

n2r2 +2 [(l − 1)/2]

j =0

n2j −2l γ −2l n

(1)l+122j+2 − l

(2j + 1)!(l −2j −1)!

×

r2

i =0



2r2+ 1

i



(1)i(2r2+ 12i)2l −2j −1G ∗ n,2 j+1 f (x)

+

l =2r2 +2

n2r2 +2 [(l − 1)/2]

j =0

n2j −2l γ −2l n

(1)l+122j+2 − l

(2j + 1)!(l −2j −1)!

×

r2

i =0



2r2+ 1

i



(1)i(2r2+ 12i)2l −2j −1G ∗ n,2 j+1 f (x)

= S ∗ n,1 f (x) + S ∗ n,2 f (x).

(2.40)

Some simple calculation, Stirling formula and (2.5) give

w σ S ∗ n,2 f

p ≤ K7(σ, σ1,c, r)w σ f

Trang 10

forn ∈ N such that (16r2)/(nγ n)< 1 Next, in view of (2.25) and the equality

r2

i =0



2r2+ 1

i



(1)i r2− i + 1/2 2s −1

=

0 if 0< s < r2+ 1,

2r2+ 1

!/2 ifs = r2+ 1 (2.42)

we obtain

S ∗ n,1 f (x) =

r2

l =0

l 1

j =0

(1)r2 +l22j+1 − l − r2

(2j + 1)! l + r22j

!n

2j −2l γ −2l −2r22

n

×

r2

i =0



2r2+ 1

i



(1)i 2r2+ 12i 2r2 +2l −2j+1

× G ∗ n,2 j+1 f (x) + 22r2 +1(F n ∗ f )(2r2 +1)

(x).

(2.43)

Using (2.40) and the conditionnγ r2 +3/2

n ≥ cK(r), we have

(F ∗

n f )(2r2 +1)

(x) −(n/2)2r2 +1F n ∗Δ2r2 +1

2/n f (x)

≤ K8(r, c)

r 21

j =0

1

γ2n j+1

G ∗ n,2 j+1 f (x)+S ∗

n,2 f (x). (2.44)

Applying (2.5), we get (2.25) for oddr Therefore, inequality (2.25) is proved

Now we will prove (2.26) Letr =2r1,r1∈ N A simple calculation and the equality

p n,k(t −( 1− i)/n; γ) = p n,k+r1− i(t; γ) give

n r F n Δr

1/n f (x)

= n2r1 +1

r 11

i =0

k =−∞



2r1

i



(1)i p n,k −(r1− i)(x; γ) + p n,k+(r1− i)(x; γ)

×



−∞ p n,k(t; γ) f (t)dt + n2r1 +1

k =−∞



2r1

r1



(1)i p n,k(x; γ)

×



−∞ p n,k(t; γ) f (t)dt.

(2.45)

3 Main result

Theorem 3.1 Suppose that r ∈ N, (γ n ) is a positive null sequence satisfying nγ r/2+1

cK(r) for all n ∈ N with some c > 0 where K(r) =maxn ∈ N { γ r/2 −1

n } Then there exists a constant K > 0, such that for all f ∈ L p,σ(R), σ1> σ > 0, 1 ≤ p ≤ ∞ , and for an arbitrary positive number t0,

ω r F n ∗ f , t

σ1 ,p ≤ K σ, σ1,r, c 1 +t2 

ω r(f , t) σ,p+t rw σ f

p 0< t ≤ t0 

(3.1)

for all n ∈ N such that γ2

n ≤(σ1− σ)/(4σ(σ + σ1)) and nγ n > 16r2, and

ω r F n f , t

σ,p ≤ K σ, σ1,r, c 1 +t2 

ω r(f , t) σ,p+t rw σ f

p 0< t ≤ t0



(3.2)

Trang 11

for all n ∈ N such that γ n ≤ max{(σ1− σ)/(2 √

σ(σ + σ1));

σ1− σ/( √

2(σ + σ1))} and

nγ n > r2/4.

Proof Let σ2=(3σ1+σ)/4 In view of the inequality

exp − σ1x2+σ2(x + u)2

σ1− σ2

u2

and the generalized Minkowski inequality it is easy to see that for 0< h ≤1

w σ

r

h f

p =



w σ1

h/2

− h/2 ···

h/2

− h/2 f(r) ◦+s1+···+s r

exp σ2 +s1+···+s r 2 

×exp − σ2 +s1+···+s r 2 

ds1··· ds r







p

2 4

σ2σ1

σ1− σ2

h rw σ

2f(r)

p,

(3.4)

w σ

r

h f

p ≤2rexp r

2 4

σ2σ1

σ1− σ2



w σ2f

Applying these inequalities, we get

w σ

r

h f

p ≤w σ

r

h f − f(δ,2r)

p+w σ

r

h f(δ,2r)

p

2 4

σ2σ1

σ1− σ2



w σ2(f − f(δ,2r))

p+h rw σ

2f((δ,2r) r) 

p



where f(δ,2r)(x) (δ > 0, x ∈ R, r ∈ N) is defined by (2.16)

Hence, applying this inequality forF n ∗ f we have

ω r F n ∗ f , t

σ1 ,p ≤2rexp r

2 4

σ2σ1

σ1− σ2



w σ2F n ∗ f − f(δ,2r)

p+t rw σ

2 F n ∗ f(δ,2r)

 (r)

p



.

(3.7)

Hence, w σ2(F n ∗ f(δ,2r))(r)  p can be estimated by (2.5) for j =0, (2.25), and (3.4) Let

σ3=(2σ1+σ)/3, then

w σ

2 F n ∗ f(δ,2r) (r)

p

w σ

2 F n ∗ f(δ,2r)

 (r)

− n/a r)F n ∗Δr

a r /n f(δ,2r)

p+n rw σ

2F n ∗Δr

a r /n f(δ,2r)

p

≤ K σ2,σ3,r, cw σ3f(δ,2r)

p+w σ

3f((δ,2r) r) 

p



.

(3.8)

Using (2.5) for j =0 and (3.7) we have

ω r F n ∗ f , t

σ1 ,p ≤ K σ, σ1,r, cw σ3(f − f(δ,2r))

p+t rw σ

3f((δ,2r) r) 

p+t rw σ

3f(δ,2r)

p



.

(3.9)

... several autors investigated the conditions under which global smoothness of

a function< i>f , as measured by its modulus of continuity ω( f ; ◦), is retained by the elements... mean

some positive constants, not necessarily the same at each occurrence, depending only on the parameters indicated in parentheses

2 Preliminary results

Letγ... (2.32)

The equality follows simply from properties of finite differences since the left-hand side

of the equation is a half of the finite difference of the polynomial (r1

Ngày đăng: 22/06/2014, 06:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm