1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: " Research Article A Class of Commutators for Multilinear Fractional Integrals in Nonhomogeneous Spaces" pot

17 204 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 552,61 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Volume 2008, Article ID 373050, 17 pagesdoi:10.1155/2008/373050 Research Article A Class of Commutators for Multilinear Fractional Integrals in Nonhomogeneous Spaces Jiali Lian and Huoxi

Trang 1

Volume 2008, Article ID 373050, 17 pages

doi:10.1155/2008/373050

Research Article

A Class of Commutators for Multilinear Fractional Integrals in Nonhomogeneous Spaces

Jiali Lian and Huoxiong Wu

School of Mathematical Sciences, Xiamen University, Xiamen Fujian, 361005, China

Correspondence should be addressed to Huoxiong Wu,huoxwu@xmu.edu.cn

Received 3 March 2008; Accepted 16 July 2008

Recommended by Nikolaos Papageorgiou

Let μ be a nondoubling measure onRd A class of commutators associated with multilinear fractional integrals and RBMOμ functions are introduced and shown to be bounded on product

of Lebesgue spaces with μ.

Copyrightq 2008 J Lian and H Wu This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

1 Introduction

In recent years, the study of multilinear operators and their commutator has been attracting many researchers Many results which parallel to the linear theory of classical integral

rapidly Many results of singular integrals and the related operators on Euclidean spaces with Lebesgue measure have been generalized to the Lebesgue spaces with nondoubling measures

of multilinear fractional integrals and RBMO functions with nondoubling measure, which

Before stating our results, we recall some definitions and notations Let μ be a Radon

n ∈ 0, d, such that

side length of Q For r > 0, rQ will denote the cube with the same center as Q and with

lrQ  rlQ.

Trang 2

Let 0≤ β < n, given two cubes Q ⊂ R in R d, we set

K Q,R β  1 

NQ,R

k1



μ

2k Q

l

2k Qn

1−β/n

where N Q,R is the first integer k such that l2 k Q ≥ lR If β  0, then K0Q,R  K Q,R The later

1

μηQ



Q

by − m

Q b dμy ≤ C1,

m Q b − m R b ≤ C1K Q,R , for any two doubling cubes Q ⊂ R,

1.3

different parameters η > 1 and βd > 2 n

We consider the following multilinear fractional integral operator

I α,m



f1, , f m



x 



Rdm

f1



x − y1



f2



x − y2



· · · f m



x − y m

 y1, y2, , y m mn−α dμ

y1



· · · dμy m



σ  {σ1, , σj} of {1, 2, , m} of j different elements For any σ ∈ C j m , we denote σ 

{1, 2, , m} \ σ  {σj  1, , σm} Moreover, for b j ∈ RBMOμ, j  1, 2, , m, let

b  b1, b2, , b m  and denote by b σ  b σ1 , , b σj  and by b σ x  b σ1 x · · · b σj x Also, we denote  f  f1, , f m ,  f σ  f σ1 , , f σj ,  b σf  σ b σj1 f σj1 , , b σm f σm

b, I α,m



f

j0



σ∈C m j

−1m−j

b σ xI α,m



f σ ,  b σf  σ

In particular, for m  2, we define

b1, b2, I α,2



f1, f2



x  b1xb2xI α,2



f1, f2



x − b1xI α,2



f1, b2f2



x

− b2xI α,2



b1f1, f2



x  I α,2



b1f1, b2f2



Trang 3

Theorem 1.1 Let μ be defined as above and μ  ∞, b j ∈ RBMORd , j  1, 2, 0 < α < 2n Then

b1, b2, I α,2  is a bounded operator from L q1× L q2 to L q with 1/q  1/q1 1/q2− α/2n > 0 and

1 < q1, q2 < ∞.

Remark 1.2 ByLemma 2.2inSection 2,Theorem 1.1for the caseμ < ∞ also holds provided

I α,2,b1, b2, I α,2 , b1, I α,2 , and b2, I α,2  satisfy certain T1 type conditions For instance, if I α,2

satisfies the T1 condition, that is, I α,2∗1  0, then we can easily obtain I α,2 f1, f2xdμx  0

see 3 for the notation I∗1

α,2

More generally, we have the following theorem

Theorem 1.3 Let m ∈ N, μ be defined as above, and μ  ∞, b j ∈ RBMORd , j  1, 2, , m,

0 < α < mn Then

b, I α,m



f L q μ ≤ Cm

j1

where 1/q  1/q1 1/q2 · · ·  1/q m − α/mn > 0 and 1 < q j < ∞, j  1, 2, , m.

this paper, we always use the letter C to denote a positive constant that may vary at each

occurrence but is independent of the essential variable

2 Proofs of theorems

Before proving our results, we need to recall some notation and establish some lemmas which play important roles in the proofs

M β p,η fx  sup

 1

μηQ 1−βp/n



Q

fy p

dμy

1/p

and the sharp maximal function

M #,β fx  sup 1

μ



Q

fy − m Qf dμy  sup

Q,R doubling

m Q f − m R f

where the supremum is taken over all cubes Q with sides parallel to the coordinate axes,

M #,0 f by M#f.

Nfx  sup

Q doubling

1

μQ



Q

fy dμy. 2.3

Trang 4

Lemma 2.1 see 11 Let 1 ≤ p < ∞ and 1 < ρ < ∞ Then b ∈ RBMOμ, if and only if for any

cube Q ⊂ R d ,

1

μρQ



Q

bx − m Qb p

dμx ≤ Cb p, 2.4

and for any doubling cubes Q ⊂ R,

Lemma 2.2 see 5 Let f ∈ L1

locμ with fdμ  0 if μ < ∞ For 1 < p < ∞, if inf1, Nf ∈

L p μ, then for 0 ≤ β < n we have

Nf L p μ ≤ C M #,β f L p μ 2.6

Lemma 2.3 see 5 Let p < r < n/α and 1/q  1/r − α/n Then

M α p,η f L q μ ≤ Cf L r μ , 2.7

where η > 1 and 0 ≤ α < n/p.

Lemma 2.4 Suppose μ is a Radon measure satisfying 1.1 Let m ∈ N and 1/s  1/r1· · ·1/r m

α/n > 0 with 0 < α < mn, 1 ≤ r j ≤ ∞ Then,

a if each r j > 1,

I α,m



f1, , f m L s μ ≤ Cm

j1

b if r j  1 for some j,

I α,m



f1, , f m L s,∞ μ ≤ Cm

j1

Proof The proof follows the idea that, for the classical setting, can be found in4 For the sake of completeness, we will show it again

1/r1 · · ·  1/r l ≤ l, so that mn − α > m − ln, integration in y l1 , , y mreduces matters to

that if 0 < c i , i  1, , m, and 0 < α < m

i1 c i , we can find 0 < α i < c i such that α m

i1 α i

i1 1/s i  1/s, 0 < α i /n ≤ 1,

1 < s i < ∞, and

y1 n−α1 y2 n−α2· · · y m n−α m ≤ y1, , y m nm−α

i1 α i It follows that

I α,m



f1, , f m



i1

I α i



f i



Trang 5

Lemma 2.5 Let b1, b2, I α,2  be as in 1.6, 0 < α < 2n, τ > 1, b1, b2∈ RBMOμ Then there exists

a constant C > 0 such that for all f1∈ L q1μ, f2∈ L q2μ, and x ∈ R d ,

M #,α

b1, b2, I α,2



f1, f2





I α,2



f1, f2



x

 b1 ∗M τ,3/2



b2, I α,2



f1, f2



x

 b2 ∗M τ,3/2



b1, I α,2



f1, f2



x

 b1 ∗ b2 ∗M α p

1,9/8 f1xM α p

2,9/8 f2x ,

2.12

M #,α

b1, I α,2



f1, f2



M τ,3/2



I α,2



f1, f2



x

 M p α

1,9/8



f1



xM α p

2,9/8



f2



M #,α

b2, I α,2



f1, f2



M τ,3/2



I α,2



f1, f2



x

 M p α1,9/8f1



xM α p2,9/8f2



where

b1, I α,2



f1, f2



x  b1xI α,2



f1, f2



x − I α,2



b1f1, f2



x,

b2, I α,2



f1, f2



x  b2xI α,2



f1, f2



x − I α,2



f1, b2f2



Proof By the definition, to obtain2.12, it suffices to prove that for any x ∈ R d and a cube

1

μ



Q

b1, b2, I α,2 

f1, f2



z − h Q dμz ≤ C b1

b2 ∗M τ,3/2



I α,2



f1, f2



x

 b1 ∗M τ,3/2



b2, I α,2f1, f2



x

 b2 ∗M τ,3/2



b1, I α,2f1, f2



x

 b1 ∗ b2 ∗M α p1,9/8 f1xM α p2,9/8 f2x ,

2.16

and for any cubes Q ⊂ R, where Q is an arbitrary cube and R is doubling,

h Q − h R ≤ CK2

Q,R K α Q,R b1 ∗ b2 ∗M τ,3/2



I α,2



f1, f2



x

 b1 ∗M τ,3/2



b2, I α,2



f1, f2



x

 b2 ∗M τ,3/2



b1, I α,2



f1, f2



x

 b1 ∗ b2 ∗M α p1,9/8 f1xM α p

2,9/8 f2x ,

2.17

where

h Q  m Q



I α,2



m Q

b1



− b1



f1χRd \4/3Q ,

m Q

b2



− b2



f2χRd \4/3Q

,

h R  m R



I α,2



m R

b1



− b1



f1χRd \4/3R ,

m R

b2



− b2



f2χRd \4/3R

Trang 6

First of all, it is easy to see that

b1, b2, I α,2 

f1, f2



z − h Q ≤ b1z − m Q

b1



b2z − m Q

b2



I α,2



f1, f2



z

 b1z − m Q

b1



I α,2



f1,

b2z − b2



f2



z

 b2z − m

Q



b2



I α,2



b1z − b2



f1, f2



z

 I α,2

b1− m Qb1f1,

b1− m Qb1f2



z − h Q : Iz  IIz  IIIz  IVz

2.19

Consequently,

1

μ



Q

b1, b2, I α,2 

f1, f2



In what follows, we estimate I–IV, respectively For I, by H ¨older’s inequality and

Lemma 2.1, we have

μ



Q

Izdμz

≤ C

 1

μ



Q

b1z − m

Q



b1 τ1

dμz

1/τ1

×

 1

μ



Q

b2z − m Q

b2 τ2

dμz

1/τ2

×

 1

μ



Q

I α,2

f1, f2 τ

dμz

1/τ

≤ C b1 ∗ b2 ∗M τ,3/2



I α,2



f1, f2



x,

2.21

where τ1> 1, τ2> 1 and 1/τ  1/τ1 1/τ2 1.

For II, we have

μ



Q

IIzdμz

≤ C

 1

μ



Q

b1z − m Q

b1 s

dμz

1/s

μ



Q

b2, I α,2 

f1, f2



z τ

dμz

1/τ

≤ C b1 ∗M τ,3/2



b2, I α,2



f1, f2



x,

2.22

where s > 1 and 1/s  1/τ  1.

Trang 7

Similarly, we have

III≤ C b2 ∗M τ,3/2



b2, I α,2



f1, f2



It remains to estimate IV For convenience, we set f j0  f j χ 4/3Q , f j  f0

j  f

j , j  1, 2.

Then,

IVz ≤ Iα,2



b1− m Qb1



f10,

b2− m Qb2



f20

z

 I α,2

b1− m Q

b1



f10,

b2− m Q

b2



f2∞

z

 I α,2

b1− m Qb1



f1∞,

b2− m Qb2



f20

z

 I α,2

b1− m Qb1



f1∞,

b2− m Qb2



f2∞

z − h Q

 IV1z  IV2z  IV3z  IV4z,

2.24

and so we have

1

μ



Q

IVz dμz ≤4

j1

1

μ



Q

j1

To estimate IV1, set s1 √p1, s2  √p2, and 1/v  1/s1 1/s2− α/n It follows from H¨older’s

IV1≤ μQ1−1/v

μ



b1− m Q

b1



f10,

b2− m Q

b2



f20 L v μ

≤ Cμ3/2Q−1/v b1− m Qb1



f0

1 L s1 μ b2− m Qb2



f0

2 L s2 μ

μ



4/3Q

f1y1 p1

dμy1

1/p1

×



4/3Q

b1y1 − m Q

b1 p1/p

1 −1

dμy1

√p1−1/p1

×



4/3Q

f2y2 p2

dμy2

1/p2

4/3Q

b2y1 − m Q

b i p2/p

2 −1

dμy i

√p2−1/p2

i1



1

μ

3/2Q1−αpi /2n



4/3Q

f i y i p i

dμy i

1/p i

×



1

μ



4/3Q

b i y i  − m Q

b i p i /p

i−1

dμy i

√p i −1/p i

≤ C b1 ∗ b2 ∗M p α1,9/8 f1xM p α2,9/8 f2x.

2.26

Trang 8

For term IV2, byLemma 2.1, we have

μ



Q

μ



Q



Rd \4/3Q



4/3Q

× b1

y1



− m Qb1



f0 1



y1 b2

y2



− m Qb2



f2∞

y2 z − y1, z − y2 2n−α dμ

y1





y2



dμz

μ



Q



4/3Q

b1y − m Q

b1



f10

y1 

y1



×



Rd \4/3Q

b2

y2



− m Qb2



f2∞

y2

z − y2 2n−α dμ

y2



dμz

≤ C



1

μ

3/2Q1−αp1/2n



4/3Q

f1

y1 p1



y1

1/p1

×



1

μ



4/3Q

b1− m Q

b1 p1



y1

1/p1

× μ



3

−α/2n

μQ



k1



2k 4/3Q\2 k−1 4/3Q

b2

y2



− m Q

b2



f2



y2

2k2n−α lQ 2n−α dμ



y2



≤ C b1 ∗M p α

1,9/8 f1x∞

k1

2−kn−α/2 l



2k3

−nα/2

×



2k 4/3Q

b2

y2



− m Q

b2



f2



y2 

y2



≤ C b1 ∗M p α1,9/8 f1x∞

k1

2−kn−α/2 l



2k3

−nα/2

×



2k 4/3Q

b2

y2



− m2k4/3Qb2



f2



y2 

y2



2k 4/3Q



b2



− m Qb2 

2k 3/2Q

f2

y2 

y2



≤ C b1 ∗M p α1,9/8 f1x

×

∞

k1

2−kn−α/2



1

l

2k 3/2Qn



2k 4/3Q

b2

y2



− m2k4/3Qb2 p2



y2

1/p2

×



1

l

2k 3/2Qn−αp2/2



2k 4/3Q

f2

y2 p2



y2

1/p2

k1

k2 −kn−α/2 b2 ∗

1

l

2k 3/2Qn−α/2



2k 4/3Q

f2

y2 

y2



≤ C b1 ∗ b2 ∗M α p

1,9/8 f1xM α p

2,9/8 f2x,

2.27

Trang 9

where the last inequality follows from the following two facts:

1

l

2k 3/2Qn−α/2



2k 4/3Q

f2

y2 

y2





2k 4/3Q1−1/p2

l

2k 3/2Qn−α/2



2k 4/3Q

f2

y2 p2



y2

1/p2



2k1 4/3Q1−1/p21/p2−α/2n

l

2k1 4/3Qn−α/2



1

μ

2k1 4/3Q1−αp2/2n



2k1 4/3Q

f2

y2 p2



y2

1/p2

≤ CM p α2,9/8 f2x,

2.28 andsee11

2k 4/3Q



b j



− m Qb j jK Q, 2k 4/3Q ≤ C b jK Q,2 k 4/3Q ≤ Ck b j, j  1, 2.

2.29 Similarly,

IV3 ≤ C b1 ∗ b2 ∗M α p1,9/8 f1xM α p

2,9/8 f2x. 2.30

I α,2

b1− m Q

b1



f1∞,

b2− m Q

b2



f2∞

z − I α,2



b1− m Q

b1



f1∞,

b2− m Q

b2



f2∞

y



Rd \4/3Q



Rd \4/3Q

z − y1, z − y2 2n−α− y − y1, y − y1 2 2n−α

×

2

i1



b i



y i



− m Q

b i



f i∞

y i 

y1





y2





Rd \4/3Q



Rd \4/3Q

|z − y|

y − y1, y − y2 2n−α1

×

2

i1



b i



y i



− m Qb i



f i∞

y i 

y1





y2



i1



Rd \4/3Q

|z − y| 1/2

y − y i n−α/21/2 b i

y i



− m Qb i



f i∞

y i 

y i



i1



k1



2k 4/3Q\2 k−1 4/3Q2−k/2 1

l

2k Qn−α/2 b i

y i



− m Qb i f

i



y i 

y i



i1



k1

2−k/2



1

l

2k 3/2Qn



2k 4/3Q

b i

y i



− m Q

b i pi



y i

1/p i

×



1

l

2k 3/2Qn−αp i /2



2k 4/3Q

f i

y i p i



y i

1/p i

Trang 10

≤ C2

i1



k1

2−k/2 M p α

i ,9/8 f i x

×



1

l

2k 3/2Qn



2k 4/3Q

b i

y i



−m2k4/3Qb i



m2k4/3Qb i



−m Q

b i pi



y i

1/pi

i1



k1

2−k/2 k b iM α p i ,9/8 f i x

≤ C b1 ∗ b2 ∗M α p

1,9/8 f1xM α p

2,9/8 f2x.

2.31

Taking the mean over y ∈ Q, we obtain

I α,2

b1−m Qb1

f1∞,

b1−m Qb1



f2∞

z−h Q 1 ∗ b2 ∗M α p1,9/8 f1xM α p

2,9/8 f2x.

2.32 Thus,

μ



Q

IV4zdμz ≤ C b1 ∗ b2 ∗M α p1,9/8 f1xM p α2,9/8 f2x. 2.33 Combing2.20–2.33, we obtain 2.16

h Q − h R  m Q

I α,2



b1− m Qb1



f1∞,

b2− m Qb2



f2∞

I α,2



b1− m R b1



f1∞,

b2− m R b2



f2∞

m R

I α,2



b1− m Qb1



f1χRd\2N Q ,

b2− m Qb2



f2χRd\2N Q



I α,2



b1− m Qb1



f1χRd\2N Q ,

b2− m Qb2



f2χRd\2N Q

 m R

I α,2



b1− m R b1



f1χRd\2N Q ,

b2− m R b2



f2χRd\2N Q



I α,2



b1− m Qb1



f1χRd\2N Q ,

b2− m Qb2



f2χRd\2N Q

 m Q

I α,2



b1− m Qb1



f1χ2N Q\4/3Q ,

b2− m Qb2



f2χRd \4/3Q

 m Q

I α,2



b1− m Qb1



f1χRd\2N Q ,

b2− m Qb2



f2χ2N Q\4/3Q

 m R

I α,2



b1− m R b1



f1χRd \4/3R ,

b2− m R b2



f2χ2N Q\4/3R

 m R

I α,2



b1− m R b1



f1χ2N Q\4/3R ,

b2− m R b2



f2χRd\2N Q

i1

A i

2.34

A1 ≤ C K Q,R

2

b1 ∗ b2 ∗M α p ,9/8 f1xM α p ,9/8 f2x. 2.35

Trang 11

To estimate A2, we write

I α,2



b1− m R



b1



f1χRd\2N Q ,

b2− m R



b2



f2χRd\2N Q



z

− I α,2



b1− m Qb1



f1χRd\2N Q ,

b2− m Qb2



f2χRd\2N Q



z

m R



b2



− m Q

b2



I α,2



b1− m R



b1



f1χRd\2N Q , f2χRd\2N Q



z

m R



b1



− m Q

b1



I α,2



f1χRd\2N Q ,

b2− m R



b2



f2χRd\2N Q



z

m R



b1



− m Q

b1



m R



b2



− m Q

b2



I α,2



f1χRd\2N Q , f2χRd\2N Q



z.

2.36

Then,

A2≤ m R

b2



− m Q

b2 μR1 

R

I α,2



b1− m R



b1



f1χRd\2N Q , f2χRd\2N Q



zdμz

 m R

b1



− m Q

b1 μR1 

R

I α,2



f1χRd\2N Q ,

b2− m R



b2



f2χRd\2N Q



zdμz

 m R

b1



− m Qb1 m R

b2



− m Qb2

μR1 

R

I α,2



f1χRd\2N Q , f2χRd\2N Q



zdμz

 A21 A22 A23.

2.37

It is obvious that

A23≤ CK2

Q,R b1 ∗ b2 ∗M τ,3/2



I α,2



f1, f2



I α,2



b1− m R b1



f1χRd\2N Q , f2χRd\2N Q



z

 I α,2



b1− m R b1



f1, f2



z − I α,2



b1− m R b1



f1χ2N Q χ 4/3R , f2χ 4/3R

z

− I α,2



b1− m R b1



f1χ 4/3R , f2χ2N Q χ 4/3R

z

 I α,2



b1− m R b1



f1χ2N Q χ 4/3R , f2χ2N Q χ 4/3R

z

− I α,2



b1− m R b1



f1χRd \4/3R , f2χ2N Q



z

− I α,2



b1− m R b1



f1χ2N Q , f2χRd \4/3R

z

 I α,2



b1− m R b1



f1χ2N Q\4/3R , f2χ2N Q\4/3R



z

j1

B j z.

2.39

I α,2

b1− m R b1



f1, f2

z ≤ I α,2



b1− b1zf1, f2

z  I α,2



b1z − m R b1



f1, f2



z .

2.40

Trang 12

By H ¨older’s inequality and the fact that R is doubling, we have

1

μR



R

I α,2



b1− m R b1



f1, f2





I α,2



f1, f2



x,

1

μR



R

I α,2



b1− b1zf1, f2





b1, I α,2



f1, f2



x,

2.41

which imply

M τ,3/2



I α,2



f1, f2



x  M τ,3/2



b1, I α,2



f1, f2



Lemma 2.4, we have

1

μR



R

μR I α,2



b1− m R



b1



f1χ2N Q χ 4/3R , f2χ 4/3R L v μ

≤ Cμ

 3

−1/v

b1− m R



b1



f1χ2N Q χ 4/3R L s1 μ f2χ 4/3R L s2 μ

≤ Cμ

 3

4/3R

f2y p2

dμy

1/p2

4/3R

f1x p1

dμy

1/p1

×



4/3R

b1y − m R

b1 p1/p

1 −1

dμy

√p1−1/p1

≤ C



1

μ

3/2R1−αp1/2n



4/3R

f1y p1

dμy

1/p1

×

 1

μ



4/3R

b1y − m R

b1 p1/p

1 −1

dμy

√p1−1/p1

×



1

μ

3/2R1−αp2/2n



4/3Q

f2y p2

dμy

1/p2

≤ C b1 ∗M α p

1,9/8 f1xM α p

2,9/8 f2x,

2.43 which implies

p1,9/8 f1xM p α2,9/8 f2x. 2.44 Similarly,

M α p

1,9/8 f1xM α p

2,9/8 f2x,

M α p ,9/8 f1xM α p ,9/8 f2x. 2.45

... b2f2



Trang 3

Theorem 1.1 Let μ be defined as above and... f2x.

2.26

Trang 8

For term IV2, byLemma 2.1, we have

μ... and 1/s  1/τ  1.

Trang 7

Similarly, we have

III≤ C b2 ∗M τ,3/2

Ngày đăng: 22/06/2014, 02:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm