Volume 2009, Article ID 819036, 12 pagesdoi:10.1155/2009/819036 Research Article Strong Convergence Theorems for Common Fixed Points of Multistep Iterations with Errors in Banach Spaces
Trang 1Volume 2009, Article ID 819036, 12 pages
doi:10.1155/2009/819036
Research Article
Strong Convergence Theorems for
Common Fixed Points of Multistep Iterations
with Errors in Banach Spaces
1 Department of Mathematics, Institute of Applied Mathematics, Hangzhou Normal University,
Hangzhou, Zhejiang 310036, China
2 Mathematics group, West Lake High Middle School, Hangzhou, Zhejiang 310012, China
Correspondence should be addressed to Feng Gu,gufeng99@sohu.com
Received 19 November 2008; Revised 11 January 2009; Accepted 9 April 2009
Recommended by Yeol Je Cho
We establish strong convergence theorem for multi-step iterative scheme with errors for asymptotically nonexpansive mappings in the intermediate sense in Banach spaces Our results extend and improve the recent ones announced by Plubtieng and Wangkeeree2006, and many others
Copyrightq 2009 F Gu and Q Fu This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
1 Introduction
Let C be a subset of real normal linear space X A mapping T : C → C is said to be asymptotically nonexpansive on C if there exists a sequence {r n } in 0, ∞ with lim n → ∞ r n 0
such that for each x, y ∈ C,
T n x − T n y ≤ 1 r nx − y, ∀n ≥ 1. 1.1
If r n ≡ 0, then T is known as a nonexpansive mapping T is called asymptotically
nonexpansive in the intermediate sense1 provided T is uniformly continuous and
lim sup
n → ∞
sup
x,y∈C
T n x − T n y − x − y ≤ 0. 1.2
Trang 2From the above definitions, it follows that asymptotically nonexpansive mapping must be asymptotically nonexpansive in the intermediate sense
Let C be a nonempty subset of normed space X, and Let T i : C → C be m mappings For a given x1∈ C and a fixed m ∈ N N denotes the set of all positive integers, compute the iterative sequences x1n , , x m n defined by
x1n α1n T i k x n β1n x n γ n1u1n ,
x2n α2n T i k x1n β2n x n γ n2u2n ,
x3n α3n T i k x2n β3n x n γ n3u3n ,
x m−1 n α m−1 n T k
i x n m−2 β m−1 n x n γ n m−1 u m−1 n ,
x n1 x n m α m n T i k x m−1 n β n m x n γ n m u m n , ∀n ≥ 1,
1.3
where n k − 1m i, {u1n }, {u2n }, , {u m n } are bounded sequences in C and {α i n },
{β i n }, {γ n i }, are appropriate real sequences in 0, 1 such that α i n β i n γ n i 1 for each
i ∈ {1, 2, , m}.
The purpose of this paper is to establish a strong convergence theorem for common fixed points of the multistep iterative scheme with errors for asymptotically nonexpansive mappings in the intermediate sense in a uniformly convex Banach space The results presented in this paper extend and improve the corresponding ones announced by Plubtieng and Wangkeeree2, and many others
2 Preliminaries
Definition 2.1see 1 A Banach space X is said to be a uniformly convex if the modulus of convexity of X is
δ X inf
1− x y
2 : x y 1, x − y > 0, ∀ ∈ 0, 2. 2.1
Lemma 2.2 see 3 Let {a n }, {b n }, and {γ n } be three nonnegative real sequences satisfying the
following condition:
a n1≤1 γ n
a n b n , ∀n ≥ 1, 2.2
where∞
n1 γ n < ∞ and∞
n1 b n < ∞ Then
1 limn → ∞ a n exists;
2 If lim inf n → ∞ a n 0, then lim n → ∞ a n 0.
Trang 3Lemma 2.3 see 4 Let X be a uniformly convex Banach space and 0 < α ≤ t n ≤ β < 1 for all
n ≥ 1 Suppose that {x n } and {y n } are two sequences of X such that
lim sup
n → ∞
x n ≤ a,
lim sup
n → ∞
y n ≤ a,
lim
n → ∞t n x n 1 − t n y n a,
2.3
for some a ≥ 0 Then
lim
3 Main Results
Lemma 3.1 Let X be a uniformly convex Banach space, {x n }, {y n } are two sequences of X, α, β ∈
0, 1 and {α n } be a real sequence If there exists n0∈ N such that
i 0 < α ≤ α n ≤ β < 1 for all n ≥ n0;
ii lim supn → ∞ x n ≤ a;
iii lim supn → ∞ y n ≤ a;
iv limn → ∞ α n x n 1 − α n y n a,
then lim n → ∞ x n − y n 0.
Proof The proof is clear byLemma 2.3
Lemma 3.2 Let X be a uniformly convex Banach space, let C be a nonempty closed bounded convex
subset of X, and let T i : C → C be m asymptotically nonexpansive mappings in the intermediate
sense such that F m
i1 FT i / ∅ Put
G ik sup
x,y∈C
T k
i x − T k
so that∞
k1 G ik < ∞ Let {α i n }, {β n i }, and {γ n i } be real sequences in 0, 1 satisfying the following
condition:
i α i n β i n γ n i 1 for all i ∈ {1, 2, , m} and n ≥ 1;
ii∞
n1 γ n i < ∞ for all i ∈ {1, 2, , m}.
If {x n } is the iterative sequence defined by 1.3, then, for each p ∈ F m
i1 FT i , the limit
limn → ∞ x n − p exists.
Trang 4Proof For each q ∈ F, we note that
x n1− q α1
n T i k x n β n1x n γ n1u1n − q
≤ α1n T k
i x n − q β1
n x n − q γ1
n u1
n − q
≤ α1n x n − q α1
n G ik β1n x n − q γ1
n u1
n − q
α1n β n1 x n − q α1
n G ik γ n1u1
n − q
≤x n − q d1
n ,
3.2
where d1n α1n G ik γ n1 u1n − q Since
∞
n1
G ik
i∈I
∞
k1
we see that
∞
n1
It follows from3.2 that
x2n − q ≤ α2
n x1
n − q α2
n G ik β2n x n − q γ2
n u2
n − q
≤ α2n
x
n − q d1
n α2n G ik β2n x n − q γ2
n u2
n − q
α2n β2n x n − q α2
n d1n α2n G ik γ n2u2
n − q
≤x n − q d2
n ,
3.5
where d2n α2n d n1 α2n G ik γ n2 u2n − q Since
∞
n1
G ik < ∞,
∞
n1
we see that
∞
n1
Trang 5It follows from3.5 that
x3n − q ≤ α3
n x2
n − q α3
n G ik β3n x n − q γ3
n u3
n − q
≤ α3n
x
n − q d1
n α3n G ik β3n x n − q γ3
n u3
n − q
α3n β3n x n − q α3
n d2n α3n G ik γ n3u3
n − q
≤x n − q d3
n ,
3.8
where d3n α3n d n2 α3n G ik γ n3 u3n − q , and so
∞
n1
By continuing the above method, there are nonnegative real sequences{d k n } such that
∞
n1
d k n < ∞,
x k n − q ≤x
n − q d k
n , ∀k ∈ {1, 2, , m}.
3.10
This together withLemma 2.2gives that limn → ∞ x n − q exists This completes the proof.
Lemma 3.3 Let X be a uniformly convex Banach space, let C be a nonempty closed bounded convex
subset of X, and let T i : C → C be m asymptotically nonexpansive mappings in the intermediate
sense such that F m
i1 FT i / ∅ Put
G ik sup
x,y∈C
T k
i x − T i k y −x − y 3.11
so that∞
k1 G ik < ∞ Let the sequence {x n } be defined by 1.3 whenever {α i n }, {β n i }, {γ n i } satisfy
the same assumptions as in Lemma 3.2 for each i ∈ {1, 2, , m} and the additional assumption that there exists n0∈ N such that 0 < α ≤ α m−1 n , α m n ≤ β < 1 for all n ≥ n0 Then we have the following:
1 limn → ∞ T k
i x n m−1 − x n 0;
2 limn → ∞ T k
i x n m−2 − x n 0.
Proof 1 Taking each q ∈ F, it follows fromLemma 3.2that limn → ∞ x n − q exists Let
lim
Trang 6for some a ≥ 0 We note that
x m−1 n − q ≤x
n − q d m−1
where{dm−1 n } is a nonnegative real sequence such that
∞
n1
d m−1 n < ∞. 3.14
It follows that
lim sup
n → ∞
x n m−1 − q ≤ lim sup
n → ∞
x n − q
lim
n → ∞x n − q
a,
3.15
which implies that
lim sup
n → ∞
T k
i x m−1 n − q ≤ lim sup
n → ∞
x m−1
n − q G
ik
lim
n → ∞
x n m−1 − q
≤ a.
3.16
Next, we observe that
T k
i x m−1 n − q γ n m
u m n − x n ≤T k
i x m−1 n − q γ m
n
u m n − x n . 3.17 Thus we have
lim sup
n → ∞
T k
i x n m−1 − q γ n m
u m n − x n ≤ a. 3.18
Also,
x n − q γ n m
u m n − x n ≤x n − q γ m
n u m
n − x n 3.19
gives that
lim sup
n → ∞
x n − q γ n m u m n − x n ≤ a. 3.20
Trang 7Note that
a lim
n → ∞
x n m − q
lim
n → ∞
α m n T i k x n m−1 β m n x n γ n m u m n − q
lim
n → ∞
α m n T i k x n m−1 1− α m n x n − γ n m x n
γ n m u m n − 1− α m n q − α m n q
lim
n → ∞
α m n T k
i x n m−1 − α m n q α m n γ n m u m n − α m n γ n m x n
1− α m n q − γ n m x n γ n m u m n − α m n γ n m u m n α m n γ n m x n
lim
n → ∞
α m n
T i k x n m−1 − q γ n m
u m n − x n
1− α m n x n − q γ n m
u m n − x n .
3.21
This together with3.18, 3.20, andLemma 3.1, gives
lim
n → ∞
T k
i x m−1 n − x n 0. 3.22
This completes the proof of1
2 For each n ≥ 1,
x n − q x n − T k
i x m−1 n T k
i x n m−1 − q
≤x
n − T k
i x m−1 n x m−1
n − q G
ik
3.23
Since
lim
n → ∞
x n − T k
i x n m−1 0 lim
we obtain
a lim
n → ∞x n − q ≤ liminf
n → ∞
x m−1 n − q. 3.25
Trang 8It follows that
a ≤ lim inf
n → ∞
x n m−1 − q
≤ lim sup
n → ∞
x m−1 n − q
≤ a,
3.26
which implies that
lim
n → ∞
x n m−1 − q a. 3.27
On the other hand, we note that
x m−2 n − q ≤x
n − q d m−2
where{d m−2 n } is a nonnegative real sequence such that
∞
n1
d m−2 n < ∞. 3.29
Thus we have
lim sup
n → ∞
x n m−2 − q ≤ lim sup
n → ∞
x n − q
a,
3.30
and hence
lim sup
n → ∞
T k
i x m−2 n − q ≤ lim sup
n → ∞
x m−2
n − q G
ik
≤ a.
3.31
Next, we observe that
T k
i x m−2 n − q γ n m−1
u m−1 n − x n ≤T k
i x n m−2 − q γ m−1
n u m−1
n − x n. 3.32
Thus we have
lim sup
n → ∞
T k
i x m−2 n − q γ n m−1 u m−1 n − x n ≤ a. 3.33
Trang 9
x n − q γ n m−1
um−1n − x n ≤x n − q γ m−1
n u m−1
n − x n 3.34
gives that
lim sup
n → ∞
x n − q γ n m−1
u m−1 n − x n ≤ a. 3.35
Note that
a lim
n → ∞
x m−1 n − q
lim
n → ∞
α m−1 n T i k x n β n m−1 x n γ n m−1 u m−1 n − q
lim
n → ∞
α m−1 n
T i k x m−2 n − q γ n m−1
u m−1 n − x n
1− α m−1 n x n − q γ n m−1
u m−1 n − x n .
3.36
Therefore, it follows from3.33, 3.35, andLemma 3.1that
lim
n → ∞
T k
i x m−2 n − x n 0. 3.37 This completes the proof
Theorem 3.4 Let X be a uniformly convex Banach space and let C be a nonempty closed bounded
convex subset of X Let T i : C → C be m asymptotically nonexpansive mappings in the intermediate
sense such that F m
i1 FT i / ∅ and there exists one member T in {T i}m
i1 which is completely continuous Put
G ik sup
x,y∈C
T k
i x − T i k y −x − y 3.38
so that∞
k1 G ik < ∞ Let the sequence {x n } be defined by 1.3 whenever {α i n }, {β n i }, {γ n i } satisfy
the same assumptions as in Lemma 3.2 for each i ∈ {1, 2, , m} and the additional assumption that there exists n0 ∈ N such that 0 < α ≤ α m−1 n , α m n ≤ β < 1 for all n ≥ n0 Then {x n k } converges
strongly to a common fixed point of the mappings {T i}m
i1 Proof FromLemma 3.3, it follows that
lim
n → ∞
T k
i x m−1 n − x n 0 lim
n → ∞
T k
i x n m−2 − x n, 3.39
Trang 10which implies that
x n1 − x n x m
n − x n
≤ α m n T k
i x m−1 n − x n γ m−1
n u m−1
n − x n −→ 0, n −→ ∞, 3.40
and so
x nl − x n −→ 0, n −→ ∞. 3.41
It follows from3.22, 3.37 that
T k
n x n − x n ≤T k
i x n − T k
i x n m−1 T k
i x m−1 n − x n
≤x
n − x m−1 n G
ikT k
i x n m−1 − x n
≤ α m−1 n T k
i x m−2 n − x n G
ik γ n m−1u m−1
n − x n
T k
i x m−1 n − x n −→ 0, n −→ ∞.
3.42
Let σ n T k
i x n − x n for all n > n0 Then we have
x n − T n x n ≤x
n − T k
n x n T k
n x n − T n x n
≤x
n − T k
i x n LT k−1
n x n − x n
≤ σ n LT k−1
n x n − T k−1
n−m x n−m T k−1
n−m x n−m − x n−m x
n−m − x n
3.43
Notice that n ≡ n − mmodm Thus T n T n−mand the above inequality becomes
x n − T n x n ≤ σ n L2 x n − x n−m Lσ n−m x n−m − x n , 3.44 and so
lim
Since
x n − T nl x n ≤ x n − x nl x nl − T nl x nl T nl x nl − T nl x n
≤ 1 L x n − x nl x nl − T nl x nl , ∀l ∈ {1, 2, , m}, 3.46
Trang 11we have
lim
n → ∞ x n − T nl x n 0, ∀l ∈ {1, 2, , m}, 3.47
and so
lim
n → ∞ x n − T l x n 0, ∀l ∈ {1, 2, , m}. 3.48
Since{x n } is bounded and one of T i is completely continuous, we may assume that T1 is completely continuous, without loss of generality Then there exists a subsequence{T1x n k} of
{T1x n } such that T1x n k → q ∈ C as k → ∞ Moreover, by 3.48, we have
lim
n → ∞ x n k − T1x n k 0, 3.49
which implies that x n k → q as k → ∞ By 3.48 again, we have
q − T l q lim
n → ∞ x n k − T l x n k 0, ∀l ∈ {1, 2, , m}. 3.50
It follows that q ∈ F Since lim n → ∞ x n − q exists, we have
lim
that is,
lim
n → ∞ x m n lim
Moreover, we observe that
x k n − q ≤x
n − q d k
for all k 1, 2, , m − 1 and
lim
Therefore,
lim
for all k 1, 2, , m − 1 This completes the proof.
Trang 12Remark 3.5. Theorem 3.4improves and extends the corresponding results of Plubtieng and Wangkeeree2 in the following ways
1 The iterative process {x n} defined by 1.3 in 2 is replaced by the new iterative process{x n} defined by 1.3 in this paper
a asymptotically nonexpansive mappings in the intermediate sense to a finite family of asymptotically nonexpansive mappings in the intermediate sense
Remark 3.6 If m 3 and T1 T2 T3 T inTheorem 3.4, we obtain strong convergence
theorem for Noor iteration scheme with error for asymptotically nonexpansive mapping T in
the intermediate sense in Banach space, we omit it here
References
1 K Goebel and W A Kirk, “A fixed point theorem for asymptotically nonexpansive mappings,”
Proceedings of the American Mathematical Society, vol 35, no 1, pp 171–174, 1972.
2 S Plubtieng and R Wangkeeree, “Strong convergence theorems for multi-step Noor iterations with
errors in Banach spaces,” Journal of Mathematical Analysis and Applications, vol 321, no 1, pp 10–23,
2006
3 Q Liu, “Iterative sequences for asymptotically quasi-nonexpansive mappings with error member,”
Journal of Mathematical Analysis and Applications, vol 259, no 1, pp 18–24, 2001.
4 J Schu, “Iterative construction of fixed points of strictly pseudocontractive mappings,” Applicable
Analysis, vol 40, no 2-3, pp 67–72, 1991.
... T in< /i>Theorem 3.4, we obtain strong convergencetheorem for Noor iteration scheme with error for asymptotically nonexpansive mapping T in< /i>
the intermediate sense in Banach. ..
2 S Plubtieng and R Wangkeeree, ? ?Strong convergence theorems for multi-step Noor iterations with
errors in Banach spaces,” Journal of Mathematical Analysis and Applications,... 12
Remark 3.5. Theorem 3.4improves and extends the corresponding results of Plubtieng and Wangkeeree2 in the following ways
1