1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: " Research Article Fractional Calculus and p-Valently Starlike Functions" pptx

9 184 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 479,91 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Volume 2009, Article ID 683985, 9 pagesdoi:10.1155/2009/683985 Research Article Starlike Functions Osman Altıntas¸1 and ¨ Oznur ¨ Ozkan2 1 Department of Matematics Education, Bas¸kent Un

Trang 1

Volume 2009, Article ID 683985, 9 pages

doi:10.1155/2009/683985

Research Article

Starlike Functions

Osman Altıntas¸1 and ¨ Oznur ¨ Ozkan2

1 Department of Matematics Education, Bas¸kent University, Ba˘glıca, TR-06530, Ankara, Turkey

2 Department of Statistics and Computer Sciences, Bas¸kent University, Ba˘glıca, TR 06530, Ankara, Turkey

Correspondence should be addressed to ¨Oznur ¨Ozkan,oznur@baskent.edu.tr

Received 18 November 2008; Accepted 28 February 2009

Recommended by Alberto Cabada

In this investigation, the authors prove coefficient bounds, distortion inequalities for fractional calculus of a family of multivalent functions with negative coefficients, which is defined by means

of a certain nonhomogenous Cauchy-Euler differential equation

Copyrightq 2009 O Altıntas¸ and ¨O ¨Ozkan This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

1 Introduction and Definitions

LetTnp denote the class of functions fz of the form

f z  z p− ∞

k np

a k z k ak ≥ 0; n, p ∈ N  {1, 2, 3, }, 1.1

which are analytic and multivalent in the unit disk U  {z : z ∈ C and |z| < 1}.

The fractional calculus are defined as followse.g., 1,2 

Definition 1.1 The fractional integral of order δ is defined by

D−δ

z f z  1

Γδ

z

0

f ξ

z − ξ1−δdξ δ > 0, 1.2

where f z is an analytic function in a simply-connected region of the z-plane containing the

origin and the multiplicity ofz − ξ δ−1is removed by requiring logz − ξ to be real when

z − ξ > 0.

Trang 2

Definition 1.2 The fractional derivative of order δ is defined by

Dδ

z f z  1

Γ1 − δ

d dz

z

0

f ξ

z − ξ δ dξ 0 ≤ δ < 1, 1.3

where fz is constrained and multiplicity of z − ξ −δis removed as inDefinition 1.1

Definition 1.3 Under the hypotheses ofDefinition 1.1, the fractional derivative of ordernδ

is defined by

Dn δ

z f z  d n

dz nDδ

z f z 0≤ δ < 1, n ∈ N0 N ∪ {0}. 1.4

a v denotes the Pochhammer symbol (or the shifted factorial), since

1n  n! for n ∈ N0 : N ∪ {0}, 1.5 definedfor a, v ∈ C and in terms of the Gamma function by

a v: Γa  v Γa 



1, v  0, a ∈ C \ {0},

a a  1 · · · a  n − 1, v  n ∈ N; a ∈ C. 1.6

The earlier investigations by Goodman3,4 and Ruscheweyh 5 , we define the n, p, ε-neighborhood of a function f ∈ Tnp by

Nε

n,p



Dδ f,Dδ g

:



g∈ Tnp : gz  zp− ∞

k np

b k z k ,



k np

k  1 − δ δ ka k − bk ≤ ε,

1.7

so that, obviously,

Nε

n,p



Dδ

z h,Dδ

z g

:



g∈ Tnp : gz  zp− ∞

k np

b k z k ,



k np

k  1 − δ δ kb k ≤ ε, 1.8

where

h z : z p 1.9

Trang 3

The class Sδ

n,p λ, α denote the subclass of Tnp consisting of functions fz which

satisfy

Re z FzFz > α 0 ≤ α < p, p ∈ N, 1.10 where

Fz  λzD1δ

z f z  1 − λD δ

z f z 0 ≤ λ ≤ 1, 0 ≤ δ < 1. 1.11

We note that the classS0

1,1 λ, α was investigated by Altıntas¸ 6 and the class S0

n,p λ, α

was studied by Altıntas¸ et al 7,8

We donote by

S0

n,p 0, α  S

n p, α, S0

n,p 1, α  Cnp, α 1.12

the classes of p-valently starlike functions of order α in U 0 ≤ α < p and p-valently convex functions of order α in U 0 ≤ α < p, respectively see, 2,9

Finally Kδ

n,p λ, α, μ denote the subclass of the general class Tnp consisting of functions fz ∈ Tnp satisfying the following nonhomogeneous Cauchy-Euler differential

equation:

z2D2δ

z ω  21  μzD1δ

z ω  μ1  μD δ

z ω  p − δ  μp − δ  μ  1D δ

z g, 1.13

where ω  fz, fz ∈ Tnp, g  gz ∈ S δ

n,p λ, α and μ > δ − p.

The main object of the present paper is to give coefficients bounds and distortion inequalities for functions in the classesSδ

n,p λ, α and K δ

n,p λ, α, μ.

2 Coefficient Bounds and Distortion Inequalities

We begin by proving the following result

Lemma 2.1 Let the function fz ∈ T np be defined by 1.1 Then fz is in the class S δ

n,p λ, α

if and only if



k np

k  1 − δ δ k − α − δ1  λk − 1 − δ ak ≤ p  1 − δ δ p − α − δ1  λp − 1 − δ

0 ≤ λ ≤ 1; 0 ≤ α < p − δ; 0 ≤ δ < 1; p ∈ N.

2.1

The result is sharp for the function f z given by

f z  z pp  1 − δ δ p − α − δ1  λp − 1 − δ

n  p  1 − δ δ n  p − α − δ1  λn  p − 1 − δ z n p . 2.2

Trang 4

Proof Let f z ∈ Tnp and Fz be defined by 1.11 Suppose that fz ∈ S δ

n,p λ, α Then,

in conjunction with1.10 and 1.11 yields

Re p1−δ δ p−δ1λp−1−δ z

p −δ− ∞

k np k1−δ δ k − δ1λk−1−δ ak z k −δ

p  1 − δ δ 1  λp − 1 − δ z p −δ− ∞

k np k  1 − δ δ 1  λk − 1 − δ ak z k −δ > α.

2.3

By letting z → 1−along the real axis, we arrive easily at the inequality in2.1

Lemma 2.2 Let the function fz given by 1.1  be in the class S δ

n,p λ, α Then



k np

k  1 − δ δ a kp  1 − δ δ p − α − δ1  λp − 1 − δ

n  p − α − δ1  λn  p − 1 − δ , 2.4



k np

k  1 − δ δ ka kp  1 − δ δ p − α − δ1  λp − 1 − δ n  p

n  p − α − δ1  λn  p − 1 − δ . 2.5

Proof By usingLemma 2.1, we find from2.1 that

n  p − α − δ1  λn  p − 1 − δ ∞

k np

k  1 − δ δ a k

≤ ∞

k np

k  1 − δ δ k − α − δ1  λk − 1 − δ ak

≤ p  1 − δ δ p − α − δ1  λp − 1 − δ ,

2.6

which immediately yields the first assertion2.4 ofLemma 2.2

For the proof of second assertion, by appealing to2.1, we also have

1  λn  p − δ − 1

 ∞



k np

k  1 − δ δ ka k − α  δ ∞

k np

k  1 − δ δ a k



≤ p  1 − δ δ p − α − δ1  λp − 1 − δ ,

2.7

by using2.4 in 2.7, we can easily get the assertion 2.5 ofLemma 2.2

The distortion inequalities for functions in the class Kδ

n,p λ, α, μ are given by

Theorem 2.3below

Trang 5

Theorem 2.3 Let a function fz ∈ T np be in the class K δ

n,p λ, α, μ Then

|fz| ≤ |z| pp  1 − δ δ p − α − δp − δ  μp − δ  μ  1

n  p  1 − δ δ n  p − α − δn  p − δ  μ

1 λp − δ − 1

1 λn  p − δ − 1 |z| n p ,

2.8

|fz| ≥ |z| pp  1 − δ δ p − α − δp − δ  μp − δ  μ  1

n  p  1 − δ δ n  p − α − δn  p − δ  μ

1 λp − δ − 1

1 λn  p − δ − 1 |z| n p .

2.9

Proof Suppose that a function f z ∈ Tnp is given by 1.1 and also let the function gz ∈

Sδ

n,p λ, α occurring in the nonhomogenous differential equation 1.13 be given as in the Definitions1.2 or 1.3 with of course

b k ≥ 0 k  n  p, n  p  1, . 2.10 Then we easily see from1.13 that

a k p − δ  μp − δ  μ  1 k − δ  μk − δ  μ  1 b k k  n  p, n  p  1, . 2.11

So that

f z  z p− ∞

k np

a k z k  z p− ∞

k np

p − δ  μp − δ  μ  1

k − δ  μk − δ  μ  1 b k z k , 2.12

|fz| ≤ |z| p  |z| n p ∞

k np

p − δ  μp − δ  μ  1

k − δ  μk − δ  μ  1 b k 2.13

Since gz ∈ S δ

n,p λ, α, the first assertion 2.4 ofLemma 2.2yields the following inequality:

b k ≤ p  1 − δ δ p − α − δ1  λp − δ − 1

n  p  1 − δ δ n  p − α − δ1  λn  p − δ − 1 . 2.14

From2.13 and 2.14 we have

|fz| ≤ |z| p  |z| n p p  1 − δ δ p − α − δ1  λp − δ − 1

n  p  1 − δ δ n  p − α − δ1  λn  p − δ − 1

· ∞

k np

1

k − δ  μk − δ  μ  1 ,

2.15

Trang 6

and also note that



k np

1

k − δ  μk − δ  μ  1 



k np

1

k − δ  μ

1

k − δ  μ  1

 1

n  p − δ  μ ,

2.16

where μ ∈ R \ {−n − p, − n − p − 1, } The assertion 2.8 ofTheorem 2.3follows at once from

2.15 The assertion 2.9 ofTheorem 2.3can be proven by similarly applying2.12, 2.14, and2.15, and also 2.16

By setting δ : 0 inTheorem 2.3, we obtain the followingCorollary 2.4

Corollary 2.4 See Altıntas¸ et al 8, Theorem 1  If the functions f and g satisfy the

nonhomoge-neous Cauchy-Euler differential equation 1.13, then

|fz| ≤ |z| pn  p − αn  p  μ1  λn  p − 1 p − αp  μp  μ  11  λp − 1 |z| n p ,

|fz| ≥ |z| pn  p − αn  p  μ1  λn  p − 1 p − αp  μp  μ  11  λp − 1 |z| n p

2.17

By letting δ : 0, λ : 0 and δ : 0, λ : 1 inTheorem 2.3 We arrive at Corollaries2.5

and2.6see, 8 

Corollary 2.5 If the functions f and g satisfy the nonhomogeneous Cauchy-Euler differential

equa-tion1.13 with g ∈ S

n p, α, then

|fz| ≤ |z| pp − αp  μp  μ  1 n  p − αn  p  μ |z| n p ,

|fz| ≥ |z| pp − αp  μp  μ  1

n  p − αn  p  μ |z| n p .

2.18

Corollary 2.6 If the functions f and g satisfy the nonhomogeneous Cauchy-Euler differential

equa-tion1.13 with g ∈ Cnp, α, then

|fz| ≤ |z| pn  p − αn  p  μn  p p p − αp  μp  μ  1 |z| n p ,

|fz| ≥ |z| pn  p − αn  p  μn  p p p − αp  μp  μ  1 |z| n p

2.19

3 Neighborhoods for the Classes Sδ

n,pλ, α and Kδ

n,pλ, α, μ

In this section, we determine inclusion relations for the classesSδ

n,p λ, α and K δ

n,p λ, α, μ

concerning then, p, ε-neighborhoods is defined by 1.7 and 1.8

Trang 7

Theorem 3.1 Let a function fz ∈ T np be in the class S δ

n,p λ, α Then

Sδ n,p λ, α ⊂ N ε

n,p



Dδ

z h,Dδ

z f

where h z is given by 1.9 and the parameter ε is the given by

ε : n  pp − δ δ p − α − δ1  λp − 1 − δ

n  p − α − δ1  λn  p − 1 − δ . 3.2

Proof Assertion 3.1 would follow easily from the definition of Nε

n,pDδ h,Dδ f, which is given by1.8 with gz replaced by fz and the second assertion 2.5 ofLemma 2.2

Theorem 3.2 Let a function fz ∈ T np be in the class K δ

n,p λ, α, μ Then

Kδ n,p λ, α, μ ⊂ N ε

n,p



Dδ

z g,Dδ

z f

where g z is given by 1.13 and the parameter ε is the given by

ε : n  pp − δ δ p − α − δ1  λp − 1 − δ n  p − δ  μp − δ  μ  2

n  p − α − δn  p − δ  μ1  λn  p − 1 − δ . 3.4

Proof Suppose that f z ∈ K δ

n,p λ, α, μ Then, upon substituting from 2.11 into the follo-wing coefficient inequality:



k np

k − δ δ kb k − ak ≤ ∞

k np

k − δ δ kb k ∞

k np

k − δ δ ka k , 3.5

where a k ≥ 0 and bk≥ 0, we obtain that



k np

k − δ δ kb k − ak ≤ ∞

k np

k − δ δ kb k

 ∞

k np

p − δ  μp − δ  μ  1

k − δ  μk − δ  μ  1 k − δ δ kb k

3.6

Since gz ∈ S δ

n,p λ, α, the second assertion 2.5 ofLemma 2.2yields that

k − δ δ kb kn  pp − δ δ p − α − δ1  λp − 1 − δ

n  p − α − δ1  λn  p − 1 − δ k  n  p, n  p  1,  3.7

Trang 8

Finally, by making use of2.5 as well as 3.7 on the right-hand side of 3.6, we find that



k np

k − δ δ kb k − ak

n  pp − δ δ p − α − δ1  λp − 1 − δ

n  p − α − δ1  λn  p − 1 − δ

1p − δ  μp − δ  μ  1 k − δ  μk − δ  μ  1 ,

3.8

which, by virtue of the identity2.16, immediately yields that



k np

k − δ δ kb k − ak

n  pp − δ δ p − α − δ1  λp − 1 − δ

n  p − α − δ1  λn  p − 1 − δ ·

n  p − δ  μp − δ  μ  2

n  p − δ  μ : ε.

3.9

Thus, by definition 1.7 with gz interchanged by fz, fz ∈ N ε

n,pDδ g,Dδ f This evidently completes the proof ofTheorem 3.2

By setting δ 0 inTheorem 3.2, we receive the following result

Corollary 3.3 If the function fz ∈ T np is in the class K0

n,p λ, α, μ Then

K0

n,p λ, α, μ ⊂ N ε

n,p g, f, 3.10

where g z is given by 1.13 and the parameter ε is the given by

ε : n  pp − α1  λp − 1 n  p  μp  μ  2 n  p − αn  p  μ1  λn  p − 1 3.11

Acknowledgment

This present investigation was supported by Bas¸kent UniversityAnkara, TURKEY

References

1 S Owa, “On the distortion theorems—I,” Kyungpook Mathematical Journal, vol 18, no 1, pp 53–59, 1978.

2 H M Srivastava and S Owa, Eds., Univalent Functions, Fractional Calculus, and Their Applications, Ellis

Horwood Series: Mathematics and Its Applications, Ellis Horwood, Chichester, UK, 1989

3 A W Goodman, Univalent Functions Vol I, Mariner, Tampa, Fla, USA, 1983.

4 A W Goodman, UnivalentFunctions Vol II, Mariner, Tampa, Fla, USA, 1983.

5 S Ruscheweyh, “Neighborhoods of univalent functions,” Proceedings of the American Mathematical

Society, vol 81, no 4, pp 521–527, 1981.

6 O Altıntas¸, “On a subclass of certain starlike functions with negative coefficients,” Mathematica

Japonica, vol 36, no 3, pp 489–495, 1991.

7 O Altıntas¸, H Irmak, and H M Srivastava, “Fractional calculus and certain starlike functions with negative coefficients,” Computers & Mathematics with Applications, vol 30, no 2, pp 9–15, 1995

Trang 9

8 O Altıntas¸, ¨O ¨Ozkan, and H M Srivastava, “Neighborhoods of a certain family of multivalent functions with negative coefficients,” Computers & Mathematics with Applications, vol 47, no 10-11,

pp 1667–1672, 2004

9 P L Duren, Univalent Functions, vol 259 of Grundlehren der Mathematischen Wissenschaften, Springer,

New York, NY, USA, 1983

... 1978.

2 H M Srivastava and S Owa, Eds., Univalent Functions, Fractional Calculus, and Their Applications, Ellis

Horwood Series: Mathematics and Its Applications, Ellis Horwood,...

Trang 9

8 O Altntasá, ăO ăOzkan, and H M Srivastava, “Neighborhoods of a certain family of multivalent... calculus and certain starlike functions with negative coefficients,” Computers & Mathematics with Applications, vol 30, no 2, pp 9–15, 1995

Trang 9

Ngày đăng: 22/06/2014, 02:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm