Pe ˇcari ´c1, 2 1 Abdus Salam School of Mathematical Sciences, 68-B New Muslim Town, GC University, Lahore 54000, Pakistan 2 Faculty of Textile Technology, University of Zagreb, Pierotti
Trang 1Volume 2009, Article ID 628051, 16 pages
doi:10.1155/2009/628051
Research Article
Cauchy Means of the Popoviciu Type
Matloob Anwar,1 Naveed Latif,1 and J Pe ˇcari ´c1, 2
1 Abdus Salam School of Mathematical Sciences, 68-B New Muslim Town, GC University,
Lahore 54000, Pakistan
2 Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, Zagreb 10000, Croatia
Correspondence should be addressed to Naveed Latif,sincerehumtum@yahoo.com
Received 9 October 2008; Accepted 2 February 2009
Recommended by Wing-Sum Cheung
We discuss log-convexity for the differences of the Popoviciu inequalities and introduce some mean value theorems and related results Also we give the Cauchy means of the Popoviciu type and we show that these means are monotonic
Copyrightq 2009 Matloob Anwar et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
1 Introduction and Preliminaries
Let fx and px be two positive real valued functions withb
a pxdx 1, then from theory
of convex meanscf 1 3, the well-known Jensen inequality gives that for t < 0 or t > 1,
b
a pxfx t dx ≥
b a pxfxdx
t
and vise versa for 0 < t < 1 In 4, Simic has considered the difference
D s D s a, b, f, p
b
a pxfx s dx −
b
a pxfxdx
s 1.2
The following result was given in4 see also 5
Trang 2Theorem 1.1 Let fx, px be nonnegative and integrable functions for x ∈ a, b, with
b
a pxdx 1, then for 0 < r < s < t; r, s, t / 1, one has
D s ss − 1
t−r
≤
D r rr − 1
t−s
D t tt − 1
s−r
Remark 1.2 For extension ofTheorem 1.1seecf 4
Popoviciu6 8, 9, pages 214-215 has proved the following results
Theorem 1.3 Let φ : a, b → R be convex and f : 0, 1 → R be continuous, increasing, and
convex such that a ≤ fx ≤ b for x0, 1 Then
1
0
φfxdx ≤ b a − 2 f
b − a φa
2 f − a
b − a2
b
a
where
f
1
0
If φ is strictly convex, then the equality in 1.4 holds if and only if
fx a b − a x − λ |x − λ|21 − λ , where λ
b a − 2 f
Theorem 1.4 Let φ : a, b → R be continuous and convex, and let f : 0, 1 → R be convex of
order 1, , n 1 such that a ≤ fx ≤ b for x0, 1.
Then
1
0
φfxdx ≤
1
0
φ
U j f, x
dx for ja b
j 1 ≤ f ≤ j − 1a b
j , 2 ≤ j ≤ n, 1.7
1
0
φfxdx ≤ V f for a ≤ f ≤ na b
where
U j t, x a jj 1
t − ja b
j 1
j − 1a b
x
x j−1 , 1.9
V x b na − n 1x
b − a φa
n 1x − a
nb − a n1/n
b
a φxdx
x − a n−1/n . 1.10
Trang 3If φ is strictly convex, then equality in 1.7 holds if and only if
and equality in1.8 holds if
fx a b − a
x − λ |x − λ|
21 − λ
n
, where λ b na − n 1 f
With the help of the following useful lemmas we prove our results
Lemma 1.5 Define the function
ϕ s x
⎧
⎪
⎪
⎪
⎪
x s ss − 1 , s / 0, 1;
− log x, s 0;
x log x, s 1.
1.13
Then ϕs x x s−2 , that is, ϕ s x is convex for x > 0.
The following lemma is equivalent to definition of convex functionsee 9, page 2
Lemma 1.6 If φ is a convex function on I for all s1 , s2, s3 ∈ I for which s1 < s2< s3, the following
is valid
φ
s1
s3− s2
φs2
s1− s3
φs3
s2− s1
≥ 0. 1.14
We quote here another useful lemma from log-convexity theorycf 4
Lemma 1.7 A positive function f is log-convex in the Jensen-sense on an open interval I, that is, for
each s, t ∈ I,
fsft ≥ f2
s t
2
if and only if the relation
u2fs 2uwf
s t
2
holds for each real u, w and s, t ∈ I.
Trang 4The following lemma given in 10 gives the relation between Beta function β and
Hypergeometric function F.
Lemma 1.8 Suppose a, b, c, α, γ ∈ R are such that a c > b > 0 and 0 < α < 2γ, β and F are Beta
and Hypergeometric functions, respectively Then
∞
0
x b−1
1 αx a 1 γx c dx γ −b βb, a c − bF
a, b
a c
γ − α γ
. 1.17
The paper is organized in the following way After this introduction, in the second section we discuss the log-convexity of differences of the Popoviciu inequalities 1.4, 1.7, and1.8 In the third section we introduce some mean value theorems and the Cauchy means
of the Popoviciu-type and discuss its monotonicity
2 Main Results
Theorem 2.1 Let f : 0, 1 → R be continuous, increasing, and convex such that 0 < a ≤ fx ≤ b
for x ∈ 0, 1, and let f be defined in 1.5 and
Ωs f
⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
1
ss − 1
b a − 2 f
b − a a
s 2 f − a
b − a2s 1
b s1 − a s1
−
1
0
fx s dx
, s / 0, 1;
2 f − a
b − a
1
0
logfxdx − b a − 2 f
b − a log a −
2 f − a
b − a2b log b − a log a, s 0;
b a − 2 f
b − a a log a
f − a
b − a2
b2log b − a2log a
− f − ab a
2b − a −
1
0
2.1
and letΩs f be positive.
One has thatΩs f is log-convex and the following inequality holds for −∞ < r < s < t < ∞,
Ωt−r
s f ≤ Ω t−s
r fΩ s−r
Proof Consider the function defined by
ωx u2ϕ s x 2uwϕ r x w2ϕ t x, 2.3
where r s t/2, ϕ sis defined by1.13 and u, w ∈ R We have
ωx u2x s−2 2uwx r−2 w2x t−2
ux s/2−1 wx t/2−12
> 0, x > 0.
2.4
Trang 5Therefore, ωx is convex for x > 0 UsingTheorem 1.3,
b a − 2 f
b − a
u2ϕ s a 2uwϕ r a w2ϕ t a
2 f − a
b − a2
b
a
u2ϕ s x 2uwϕ r x w2ϕ t xdx
≥
1
0
u2ϕ s fx 2uwϕ r fx w2ϕ t fxdx,
u2
b a − 2 f
b − a ϕ s a 2 f − a
b − a2
b
a
ϕ s xdx −
1
0
ϕ s fxdx
2uw
b a − 2 f
b − a ϕ r a 2 f − a
b − a2
b
a
ϕ r xdx −
1
0
ϕ r fxdx
w2
b a − 2 f
b − a ϕ t a 2 f − a
b − a2
b
a
ϕ t xdx −
1
0
ϕ t fxdx
≥ 0,
2.5
since
Ωs f b a − 2 f
b − a ϕ s a 2 f − a
b − a2
b
a
ϕ s xdx −
1
0
ϕ s fxdx, f
1
0
fxdx, 2.6
we have
u2Ωs f 2uwΩ r f w2Ωt f ≥ 0. 2.7
ByLemma 1.7, we have
Ωs fΩ t f ≥ Ω2
r f Ω2
that isΩs f is log-convex in the Jensen-sense for s ∈ R Since
lim
s → 0Ωs f Ω0f, lim
s → 1Ωs f Ω1f. 2.9
This impliesΩs f is continuous, therefore it is log-convex.
Since Ωs f is log-convex, that is, log Ω s f is convex, therefore by Lemma 1.6 for
−∞ < r < s < t < ∞ and taking φ s log Ωs, we get
logΩt−r
s f ≤ log Ω t−s
r f log Ω s−r
t f, 2.10 which is equivalent to2.2
Trang 6Theorem 2.2 Let f, Ω s f be defined in Theorem 2.1 and let t, s, u, v be real numbers such that
s ≤ u, t ≤ v, s / t, u / v, one has
Ωt f
Ωs f
1/tưs
≤Ωv f
Ωu f
1/vưu
Proof Incf 9, page 2, we have the following result for convex function f with x1 ≤ y1,
x2≤ y2, x1/ x2, y1/ y2:
f
x2
ư fx1
x2ư x1 ≤ f
y2
ư fy1
y2ư y1 . 2.12
Since byTheorem 2.1,Ωs f is log-convex, we can set in 2.12:
fx log Ω x and x1 s, x2 t, y1 u, y2 v We get
logΩt f ư log Ω s f
t ư s ≤ logΩv f ư log Ω u f
log Ωt f
Ωs f
1/tưs
≤ logΩv f
Ωu f
1/vưu
,
2.13
and after applying exponential function, we get2.11
Theorem 2.3 Let f : 0, 1 → R be convex of order 1, , n 1 such that 0 < a ≤ fx ≤ b for
x ∈ 0, 1, and let f be defined in 1.5 and
Λs f
1
0
ϕ s
U j f, x
dx ư
1
0
ϕ s fxdx, 2.14
where
U j f, x
a jj 1
f ư ja b
j 1
j ư 1a b
j ư f
x
x jư1 , 2.15
for
ja b
j 1 ≤ f ≤ j ư 1a b
j , 2≤ j ≤ n, 2.16
and letΛs f be positive.
One has thatΛs f is log-convex and the following inequality holds for ư∞ < r < s < t < ∞,
Λtưr
s f ≤ Λ tưs
r fΛ sưr
t f. 2.17
Proof As in the proof ofTheorem 2.1, we useTheorem 1.4instead ofTheorem 1.3
Trang 7Theorem 2.4 Let f, Λ s f be defined in Theorem 2.3 and t, s, u, v be real numbers such that s ≤ u,
t ≤ v, s / t, u / v, one has
Λt f
Λs f
1/tưs
≤Λv f
Λu f
1/vưu
Proof Similar to the proof ofTheorem 2.2
Lemma 2.5 Let f : 0, 1 → R be convex of order 1, , n 1 such that 0 < a ≤ fx ≤ b for x ∈
0, 1, f be defined in 1.5 and V be defined in 1.10, and let β and F are Beta and Hypergeometric
functions respectively, and
Γs f V f
ư
1
0
ϕ s fxdx. 2.19
Then
Γs f
⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
1
ss ư 1
b na ư n 1 f
s n 1 f ư a
nb ư a n1/n a
s1/n
b ư a b
1/n
×β
1
n , 1
F
⎛
⎜
⎝
s1
n 1,1
n
1
n 1
bưa b
⎞
⎟
⎠ư
1
0
ft s dt
⎤
⎥
⎦, s / 0, 1;
b na ư n 1 f
b ư a ưlog a ư n 1 f ư a
nb ư a n1/n
×
⎡
⎢
⎣n log bb ư a 1/n ư na 1/n
b ư a b
1/n1
β
1
n 1, 1
F
⎛
⎜ n1 1,1n 1 1
n 2
b ư a b
⎞
⎟
⎤
⎥
⎦
1
0
b na ư n 1 f
b ư a a log a
n 1 f ư a
nb ư a n1/n
×
nabưa 1/n log b n
n 1 log bbưa
1/n1 ưa 1/n
bưa b
1/n1
β
1
n 1, 1
×F
⎛
⎜ n1 1, n1 1 1
n 2
b ư a b
⎞
⎟ n
n 1 na
⎤
⎥
⎦ư
1
0
ftlogftdt, s 1,
2.20
Trang 8a ≤ f ≤ na b
Proof First, we solve these three integrals
I1
b
a
t s
t − a n−1/n dt, I2
b
a
log t
t − a n−1/n dt, I3
b
a
t log t
t − a n−1/n dt. 2.22
Take
I1
b
a
t s
t − a n−1/n dt. 2.23
Substitute
t a bx
1 x , dt
b − a
1 x2dx, A
and limits, when t → a then x → 0, when t → b then x → ∞ So,
I1
b
a
t s
t − a n−1/n dt
∞
0
a bx/1 x s
a bx/1 x − a1−1/n ·
b − a
1 x2dx
b − a 1/n
∞
0
a bx s 1 x1−1/n
1 x s2 x1−1/n dx,
I1 b − a 1/n a s
∞
0
x 1/n−1
1 x s1/n1 1 b/ax −s dx.
2.24
By usingLemma 1.8with a s 1/n 1, b 1/n, c −s, α 1, γ b/a such that 1/n 1 > 1/n > 0 and 0 < 1 < 2b/a, we get
I1 a s1/n b − a 1/n β
1
n , 1
F
⎛
⎜
⎝
s 1
n 1,1
n
1
n 1
b − a b
⎞
⎟
⎠. 2.25
Take second integral
I2
b
a
log t
t − a n−1/n dt, 2.26
Trang 9using integration by parts, we have
I2 n log bb − a 1/n − n
b
a
t−1t − a 1/n
dt. 2.27 Let
I4
b
a
t−1t − a 1/n dt. 2.28
By using same substitutionA as above, we get
I4
∞
0
1 x
a bx·
a bx
1 x − a
1/n
· b − a
1 x2dx b − a 1/n1
a
∞
0
x 1/n1−1
1 x 1/n1 1 b/ax dx.
2.29
By usingLemma 1.8with a 1/n 1, b 1/n 1, c 1, α 1, γ b/a such that 1/n 2 > 1/n 1 > 0 and 0 < 1 < 2b/a, we get
I2 n log bb − a 1/n − na 1/n
b − a b
1/n1
β
1
n 1, 1
F
⎛
⎜
⎝
1
n 1,1
n 1 1
n 2
b − a b
⎞
⎟
⎠. 2.30
Now, take third integral
I3
b
a
t log t
t − a n−1/n dt. 2.31 Using integration by parts, we get
I3 nab − a 1/n
log b n
n 1 log bb − a
1/n1− n
n 1
b
a
t − a 1/n1
t dt − na
b
a
t − a 1/n
t dt.
2.32 Let
I5
b
a
t − a 1/n1
By using same substitutionA as above, we get
I5
∞
0
a bx/1 x − a 1/n1
a bx/1 x ·
b − a
1 x2dx b − a 1/n1
a
∞
0
x 1/n1−1
1 x 1/n1 1 b/ax dx.
2.34
Trang 10By usingLemma 1.8with a 1/n 1, b 1/n 1, c 1, α 1, γ b/a such that 1/n 2 > 1/n 1 > 0 and 0 < 1 < 2b/a, we get
I5 a 1/n
b − a b
1/n1
β
1
n 1, 1
F
⎛
⎜
⎝
1
n 1,1
n 1 1
n 2
b − a b
⎞
⎟
⎠. 2.35
Let
I6
b
a
t − a 1/n
By using same substitutionA as above, we have
I6
∞
0
a bx/1 x − a 1/n
a bx/1 x ·
b − a
1 x2dx b − a 1/n1
a
∞
0
x 1/n1−1
1 x 1/n1 1 b/ax dx.
2.37
By usingLemma 1.8with a 1/n 1, b 1/n 1, c 1, α 1, γ b/a such that 1/n 2 > 1/n 1 > 0 and 0 < 1 < 2b/a, we get
I6 a 1/n
b − a a
1/n1
β
1
n 1, 1
F
⎛
⎜
⎝
1
n 1,1
n 1 1
n 2
b − a b
⎞
⎟
⎠. 2.38
Then
I3 nab − a 1/n
log b n
n 1 log bb − a
1/n1 − a 1/n
b − a a
1/n1
× β
1
n 1, 1
F
1
n 1,1
n 1,1
n 2 b − a
b
n
n 1 na
.
2.39
For s / 0, 1,
Γs f 1
ss − 1
b na − n 1 f
s n 1 f − a
nb − a n1/n
b
a
t s
t − a n−1/n dt −
1
0
ft s dt
.
2.40
Trang 11Using I1, we have
Γs f 1
ss − 1
b na − n 1 f
s n 1 f − a
nb − a n1/n a
s1/n
b − a b
1/n
×β
1
n , 1
F
⎛
⎜
⎝
s 1
n 1,1
n
1
n 1
b − a b
⎞
⎟
⎠ −
1
0
ft s dt
⎤
⎥
⎦.
2.41
For s 0,
Γ0f bna−n1 f
b − a −log a− n1 f − a
nb−a n1/n
b
a
log t
t−a n−1/n dt
1
0
logftdt 2.42
Using I2, we have
Γ0f b na − n 1 f
b − a −log a − n 1 f − a
nb − a n1/n
×
⎡
⎢
⎣n log bb − a 1/n − na 1/n
b − a b
1/n1
β
1
n 1, 1
F
⎛
⎜
⎝
1
n 1,1
n 1 1
n 2
b − a b
⎞
⎟
⎠
⎤
⎥
⎦
1
0
logftdt
2.43
For s 1,
Γ1f b na − n 1 f
b − a a log a
n 1 f − a
nb − a n1/n
b
a
t log t
t − a n−1/n dt −
1
0
ftlogftdt.
2.44
Using I3, we have
Γ1f b na − n 1 f
b − a a log a
n 1 f − a
nb − a n1/n
×
nab−a 1/n log b n
n1 log bb−a
1/n1 −a 1/n
b−a b
1/n1
β
1
n 1, 1
×F
⎛
⎜
⎝
1
n 1,1
n 1 1
n 2
b − a b
⎞
⎟
⎠
n
n 1 na
⎤⎥
⎦ −
1
0
ftlogftdt.
2.45
Trang 12Theorem 2.6 Let f : 0, 1 → R be convex of order 1, , n 1 such that 0 < a ≤ fx ≤ b for
x ∈ 0, 1, f be defined in 1.5 and let Γs f defined in 2.20 be positive.
One has thatΓs f is log-convex and the following inequality holds for ư∞ < r < s < t < ∞,
Γtưr
s f ≤ Γ tưs
r fΓ sưr
Proof As in the proof ofTheorem 2.1, we useTheorem 1.4instead ofTheorem 1.3
Theorem 2.7 Let f, Γ s f be defined in Theorem 2.6 and t, s, u, v be real numbers such that s ≤ u,
t ≤ v, s / t, u / v, one has
Γt f
Γs f
1/tưs
≤Γv f
Γu f
1/vưu
Proof Similar to the proof ofTheorem 2.2
3 Cauchy Means
Let us note that 2.11 has the form of some known inequalities between means e.g., Stolarsky’s means, etc. Here we prove that expressions on both sides of 2.11 are also means
Lemma 3.1 Let h ∈ C2I be such that h is bounded, that is, m ≤ h ≤ M Then the functions
φ1, φ2defined by
φ1t M
2 t2ư ht, φ2t ht ư m
2t2, 3.1
are convex functions.
Theorem 3.2 Let h ∈ C2I1, I1 is a compact interval in R and f be a continuous, increasing and
convex such that a ≤ fx ≤ b for x ∈ 0, 1, f be defined in 1.5 then ∃ ξ ∈ a, b, ξ / 0 such that
b a ư 2 f
b ư a ha
2 f ư a
b ư a2
b
a hxdx ư
1
0
hfxdx
hξ
2
b a ư 2 f
b ư a a
22 f ư a
b2 ba a2 3b ư a ư
1
0
fx2dx
.
3.2
Proof Suppose m min hx ≤ hx ≤ M max hx for x ∈ I1 Then by applying φ1and
φ2defined inLemma 3.1for φ in 1.4, we have
b a ư 2 f
b ư a φ1a 2 f ư a
b ư a2
b
a
φ1xdx ≥
1
0
φ1fxdx,
b a ư 2 f
b ư a φ2a 2 f ư a
b ư a2
b
a
φ2xdx ≥
1
0
φ2fxdx,
3.3
Trang 13that is,
M
2
b a − 2 f
b − a a
22 f − a
b2 ba a2 3b − a −
1
0
fx2
dx
≥ b a − 2 f
b − a ha
2 f − a
b − a2
b
a hxdx −
1
0
hfxdx,
3.4
b a − 2 f
b − a ha
2 f − a
b − a2
b
a hxdx −
1
0
hfxdx
≥ m 2
b a − 2 f
b − a a
22 f − a
b2 ba a2 3b − a −
1
0
fx2dx
.
3.5
By combining3.4 and 3.5 and using the fact that for m ≤ ρ ≤ M there exists ξ ∈ I1such
that hξ ρ we get 3.2.
Theorem 3.3 Let k, l ∈ C2I1 and satisfy 3.2, f be a continuous, increasing and convex such that
a ≤ fx ≤ b for x ∈ 0, 1, f be defined in 1.5, and
fx / a b − a x − λ |x − λ|21 − λ , where λ b a − 2 f
then there exists ξ ∈ I1such that
kξ
lξ
b a − 2 f/b − a
ka
2 f − a/b − a2b
a kxdx −1
0kfxdx
b a − 2 f/b − a
la 2 f − a/b − a2b
a lxdx −1
0lfxdx . 3.7
Provided that denominators are non-zero.
Proof Consider the linear functionals Ψ and η such that Ψm ηmξ for some function
m ∈ C2I1 and ξ ∈ I1 Consider the following linear combination
where c1and c2are defined as follows:
c1 Ψl b a − 2 f
b − a la
2 f − a
b − a2
b
a lxdx −
1
0
lfxdx,
c2 Ψk b a − 2 f
b − a ka
2 f − a
b − a2
b
a kxdx −
1
0
kfxdx.
3.9
Since k, l ∈ C2I1 and satisfy 3.2, therefore m as linear combination of k and l should also satisfy3.2