1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: " Research Article New Trace Bounds for the Product of Two Matrices and Their Applications in the Algebraic Riccati Equation" potx

18 457 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 520,44 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Volume 2009, Article ID 620758, 18 pagesdoi:10.1155/2009/620758 Research Article New Trace Bounds for the Product of Two Matrices and Their Applications in the Algebraic Riccati Equation

Trang 1

Volume 2009, Article ID 620758, 18 pages

doi:10.1155/2009/620758

Research Article

New Trace Bounds for the Product of

Two Matrices and Their Applications in

the Algebraic Riccati Equation

Jianzhou Liu and Juan Zhang

Department of Mathematics and Computational Science, Xiangtan University, Xiangtan,

Hunan 411105, China

Correspondence should be addressed to Jianzhou Liu,liujz@xtu.edu.cn

Received 25 September 2008; Accepted 19 February 2009

Recommended by Panayiotis Siafarikas

By using singular value decomposition and majorization inequalities, we propose new inequalities for the trace of the product of two arbitrary real square matrices These bounds improve and extend the recent results Further, we give their application in the algebraic Riccati equation Finally, numerical examples have illustrated that our results are effective and superior

Copyrightq 2009 J Liu and J Zhang This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

1 Introduction

In the analysis and design of controllers and filters for linear dynamical systems, the Riccati equation is of great importance in both theory and practicesee 1 5 Consider the following linear systemsee 4:

˙xt  Axt  But, x0  x0, 1.1 with the cost

J 

∞

0



x T Qx  u T u

Moreover, the optimal control rate uand the optimal cost J∗of1.1 and 1.2 are

u Px, P  B T K,

J x T

0Kx0,

1.3

Trang 2

where x0 ∈ R n is the initial state of the systems1.1 and 1.2, K is the positive definite

solution of the following algebraic Riccati equationARE:

A T K  KA − KRK  −Q, 1.4

with R  BB T and Q are symmetric positive definite matrices To guarantee the existence

of the positive definite solution to1.4, we shall make the following assumptions: the pair

A, R is stabilizable, and the pair Q, A is observable.

In practice, it is hard to solve the ARE, and there is no general method unless the system matrices are special and there are some methods and algorithms to solve1.4, however, the solution can be time-consuming and computationally difficult, particularly as the dimensions of the system matrices increase Thus, a number of works have been presented

by researchers to evaluate the bounds and trace bounds for the solution of theARE 6 12

In addition, from2,6, we know that an interpretation of trK is that trK/n is the average value of the optimal cost Jas x0varies over the surface of a unit sphere Therefore, consider its applications, it is important to discuss trace bounds for the product of two matrices Most available results are based on the assumption that at least one matrix is symmetric

7,8,11,12 However, it is important and difficult to get an estimate of the trace bounds when any matrix in the product is nonsymmetric in theory and practice There are some results in13–15

In this paper, we propose new trace bounds for the product of two general matrices The new trace bounds improve the recent results Then, for their application in the algebraic Riccati equation, we get some upper and lower bounds

In the following, let R n×n denote the set of n × n real matrices Let x  x1, x2, , xn be

a real n-element array which is reordered, and its elements are arranged in nonincreasing order That is, x1 ≥ x2 ≥ · · · ≥ x n Let |x|  |x1|, |x2|, , |x n | For A  a ij ∈

R n×n , let dA  d1A, d2A, , d n A, λA  λ1A, λ2A, , λ n A, σA 

1A, σ2A, , σ n A denote the diagonal elements, the eigenvalues, the singular values

of A, respectively, Let trA, A T denote the trace, the transpose of A, respectively We define

A ii  a ii  d i A, A  A  A T /2 The notation A > 0 A ≥ 0 is used to denote that A is a

symmetric positive definitesemidefinite matrix

Let α, β be two real n-element arrays If they satisfy

k



i1

α i≤k

i1

β i , k  1, 2, , n, 1.5

then it is said that α is controlled weakly by β, which is signed by α≺ wβ.

If α≺ wβ and

n



i1

α in

i1

then it is said that α is controlled by β, which is signed by α ≺ β.

Trang 3

Therefore, considering the application of the trace bounds, many scholars pay much attention to estimate the trace bounds for the product of two matrices

Marshall and Olkin in16 have showed that for any A, B ∈ R n×n , then

−n

i1

σ i Aσ i B ≤ trAB ≤n

i1

σ i Aσ i B. 1.7

Xing et al in13 have observed another result Let A, B ∈ R n×nbe arbitrary matrices with the following singular value decomposition:

B  Udiag

σ1B, σ2B, , σ n BV T , 1.8

where U, V ∈ R n×nare orthogonal Then

λ n ASn

i1

σ i B ≤ trAB ≤ λ1ASn

i1

σ i B, 1.9

where S  UV T is orthogonal

Liu and He in14 have obtained the following: let A, B ∈ R n×nbe arbitrary matrices with the following singular value decomposition:

B  Udiag

σ1B, σ2B, , σ n BV T , 1.10

where U, V ∈ R n×nare orthogonal Then

min

1≤i≤n



V T AU

ii n



i1

σ i B ≤ trAB ≤ max

1≤i≤n



V T AU

ii n



i1

σ i B. 1.11

F Zhang and Q Zhang in15 have obtained the following: let A, B ∈ R n×nbe arbitrary matrices with the following singular value decomposition:

B  Udiag

σ1B, σ2B, , σ n BV T , 1.12

where U, V ∈ R n×nare orthogonal Then

n



i1

σ i Bλ n−i1 AS ≤ trAB ≤n

i1

σ i Bλ i AS, 1.13

where S  UV T is orthogonal They show that1.13 has improved 1.9

Trang 4

2 Main Results

The following lemmas are used to prove the main results

Lemma 2.1 see 16, page 92, H.2.c If x1 ≥ · · · ≥ x n , y1 ≥ · · · ≥ y n and x ≺ y, then for any real array u1≥ · · · ≥ u n ,

n



i1

x i u i≤n

i1

Lemma 2.2 see 16, page 95, H.3.b If x1 ≥ · · · ≥ x n , y1 ≥ · · · ≥ y n and x≺wy, then for any real array u1≥ · · · ≥ u n ≥ 0,

n



i1

x i u i≤n

i1

Remark 2.3 Note that if x≺wy, then for k  1, 2, , n, x1, , x k≺w y1, , y k Thus fromLemma 2.2, we have

k



i1

x i u i≤k

i1

y i u i , k  1, 2, , n. 2.3

Lemma 2.4 see 16, page 218, B.1 Let A  AT ∈ R n×n , then

Lemma 2.5 see 16, page 240, F.4.a Let A ∈ Rn×n , then

λ



A  A T

2



w







A  A T

2





Lemma 2.6 see 17 Let 0 < m1≤ a k ≤ M1, 0 < m2≤ b k ≤ M2, k  1, 2, , n, 1/p  1/q  1 Then

n



k1 akbk

n

k1

a p k

1/p n

k1

b q k

1/q

≤ c p,q n



k1 akbk, 2.6

where

p

1M2q − m p

1m q2

p

M1m2M q2− m1M2m q2 1/p

q

m1M2M p1− M1m2m p1 1/q 2.7

Trang 5

Note that if m1  0, m2/  0 or m2  0, m1/  0, obviously, 2.6 holds If m1  m2  0, choose

cp,q  ∞, then 2.6 also holds.

Remark 2.7 If p  q  2, then we obtain Cauchy-Schwartz inequality

n



k1 akbk

n



k1

a2

k

1/2 n



k1

b2

k

1/2

≤ c2

n



k1 akbk, 2.8

where

c2 M1M2

m1m2 



m1m2

Remark 2.8 Note that

lim

p → ∞



a p1 a p

2 · · ·  a p

n

1/p

 max

1≤k≤n



ak

,

lim

p → ∞

q → 1

cp,q lim

p → ∞

q → 1

M p1M2q − m p

1m q2

p

M1m2M q2− m1M2m q2 1/p

q

m1M2M p1− M1m2m p1 1/q

 lim

p → ∞

q → 1

M p1

M q2− m1/M1p m q2

M 1/p1

p

m2M2q −m1/M1M2m q2 1/p

M q/p1

q

m1M2−M1m2m1/M1p 1/q

 lim

p → ∞

q → 1

M2

M 1/pp/q−p1 m1M2

 lim

p → ∞

q → 1

1

M11/p−1 m1

 M1

m1.

2.10

Let p → ∞, q → 1 in 2.6, then we obtain

m1

n



k1

bk≤n

k1 akbk ≤ M1

n



k1

Lemma 2.9 If q ≥ 1, a i ≥ 0 i  1, 2, , n, then

1

n

n



i1 ai

q

≤ 1

n

n



i1

Trang 6

Proof 1 Note that q  1, or a i  0 i  1, 2, , n,

1

n

n



i1 ai

q

 1

n

n



i1

2 If q > 1, a i > 0, for x > 0, choose fx  x q , then f x  qx q−1 > 0 and f x 

qq − 1x q−2 > 0 Thus, fx is a convex function As ai > 0 and 1/nn

i1 ai > 0, from the

property of the convex function, we have

1

n

n



i1 ai

q

 f

1

n

n



i1

ai ≤ 1

n

n



i1

fai  1

n

n



i1

a q i 2.14

3 If q > 1, without loss of generality, we may assume a i  0 i  1, , r, a i > 0 i 

r  1, , n Then from 2, we have

 1

n − r

q n

i1 ai

q



1

n − r

n



i1 ai

q

≤ 1

n − r

n



i1

a q i 2.15

Sincen − r/n q ≤ n − r/n, thus

1

n

n



i1

ai

q





n − r n

q 1

n − r

q n

i1 ai

q

n − r

n

1

n − r

n



i1

a q i  1

n

n



i1

a q i 2.16

This completes the proof

Theorem 2.10 Let A, B ∈ R n×n be arbitrary matrices with the following singular value decomposition:

B  Udiagσ1B, σ2B, , σ n BV T , 2.17

where U, V ∈ R n×n are orthogonal Then

n



i1

σ i Bd n−i1V T AU

≤ trAB ≤n

i1

σ i Bd iV T AU

. 2.18

Proof By the matrix theory we have

trAB  tr AUdiag

σ1B, σ2B, , σ n BV T

 tr V T AUdiag

σ1B, σ2B, , σ n B

n

i1

σi BV T AU

ii

2.19

Trang 7

Since σ1B ≥ σ2B ≥ · · · ≥ σ n B ≥ 0, without loss of generality, we may assume σB 

1B, σ2B, , σ n B Next, we will prove the left-hand side of 2.18:

n



i1

σ i Bd n−i1V T AU

≤n

i1

σ i Bd i



V T AU

If

d

V T AU

d n

V T AU

, d n−1

V T AU

, , d1

V T AU

, 2.21

we obtain the conclusion Now assume that there exists j < k such that d j V T AU >

dk V T AU, then

σ j Bd k



V T AU

 σ k Bd j



V T AU

− σ j Bd j



V T AU

− σ k Bd k



V T AU

 σ j B − σ k B dk

V T AU

− d j



V T AU

We use dV T AU to denote the vector of dV T AU after changing dj V T AU and dk V T AU,

then

n



i1

σ i B  di

V T AU

≤n

i1

σ i Bd i



V T AU

After limited steps, we obtain the the left-hand side of2.18 For the right-hand side of 2.18,

n



i1

σ i Bd i



V T AU

≤n

i1

σ i Bd i

V T AU

If

d

V T AU

d1V T AU

, d2

V T AU

, , d n

V T AU

, 2.25

we obtain the conclusion Now assume that there exists j > k such that d j V T AU <

dk V T AU, then

σ j Bd k



V T AU

 σ k Bd j



V T AU

− σ j Bd j



V T AU

− σ k Bd k



V T AU

 σ j B − σ k B dk

V T AU

− d j



V T AU

Trang 8

We use dV T AU to denote the vector of dV T AU after changing dj V T AU and dk V T AU,

then

n



i1

σ i Bd i



V T AU

≤n

i1

σ i B  di

V T AU

After limited steps, we obtain the right-hand side of2.18 Therefore,

n



i1

σ i Bd n−i1V T AU

≤ trAB ≤n

i1

σ i Bd iV T AU

. 2.28

This completes the proof

Since trAB  trBA, applying 2.18 with B in lieu of A, we immediately have the

following corollary

Corollary 2.11 Let A, B ∈ R n×n be arbitrary matrices with the following singular value decomposition:

A  P diagσ1A, σ2A, , σ n AQ T , 2.29

where P, Q ∈ R n×n are orthogonal Then

n



i1

σ i Ad n−i1

Q T BP

≤ trAB ≤n

i1

σ i Ad i Q T BP . 2.30

Now using2.18 and 2.30, one finally has the following theorem

Theorem 2.12 Let A, B ∈ R n×n be arbitrary matrices with the following singular value decompositions, respectively:

A  P diag

σ1A, σ2A, , σ n AQ T ,

B  Udiag

σ1B, σ2B, , σ n BV T ,

2.31

where P, Q, U, V ∈ R n×n are orthogonal Then

max

 n



i1

σ i Ad n−i1

Q T BP

, n



i1

σ i Bd n−i1

V T AU

≤ trAB ≤ min

 n



i1

σ i Bd i

V T AU

, n



i1

σ i Ad i

Q T BP

.

2.32

Trang 9

Remark 2.13 We point out that2.18 improves 1.11 In fact, it is obvious that

min

1≤i≤n



V T AU

ii

n



i1

σ i B ≤n

i1

σ i Bd n−i1V T AU

≤ trAB ≤n

i1

σ i Bd i

V T AU

≤ max

1≤i≤n



V T AU

ii n



i1

σ i B.

2.33

This implies that2.18 improves 1.11

Remark 2.14 We point out that2.18 improves 1.13 Since for i  1, , n, σ i B ≥ 0 and

di V T AU  di V T AU  V T AU T /2, from Lemmas2.1and2.4, then2.18 implies

n



i1

σ i Bλ n−i1

V T AU 

V T AUT

2

≤n

i1

σ i Bd n−i1

V T AU 

V T AUT

2

≤ trAB

≤n

i1

σ i Bd i

V T AU 

V T AUT

2

≤n

i1

σ i Bλ i

V T AU 

V T AUT

2.34

In fact, for i  1, 2, , n, we have

λi

V T AU  V T AU T



V T AUV

T  AUV TT



 λ i

AUV T  AUV TT

2

 λ i AS.

2.35

Trang 10

Then2.34 can be rewritten as

n



i1

σ i Bλ n−i1 AS ≤n

i1

σ i Bd n−i1

V T AU

≤ trAB

≤n

i1

σ i Bd iV T AU

≤n

i1

σ i Bλ i AS.

2.36

This implies that2.18 improves 1.13

Remark 2.15 We point out that1.13 improves 1.7 In fact, fromLemma 2.5, we have

λAS≺wσAS. 2.37

Since S is orthogonal, σAS  σA Then 2.37 is rewritten as follows: λAS≺ wσA By

using σ1B ≥ σ2B ≥ · · · ≥ σ n B ≥ 0 andLemma 2.2, we obtain

n



i1

σ i Bλ i AS ≤n

i1

σ i Bσ i A. 2.38

Note that λ i −AS  −λ n−i1 AS, fromLemma 2.2and2.38, we have

−n

i1

σ i Bλ n−i1 AS n

i1

σ i Bλ i −AS

≤n

i1

σ i Bλ i AS ≤n

i1

σ i Bσ i A.

2.39

Thus, we obtain

−n

i1

σ i Bσ i A ≤n

i1

Both2.38 and 2.40 show that 1.13 is tighter than 1.7

Trang 11

3 Applications of the Results

Wang et al in6 have obtained the following: let K be the positive semidefinite solution of

the ARE1.4 Then the trace of matrix K has the lower and upper bounds given by

λ n A 

λ n A 2 λ1RtrQ

λ1R ≤ trK ≤

λ1A 

λ1A 2 λ n R/ntrQ

λ n R/n .

3.1

In this section, we obtain the application in the algebraic Riccati equation of our results including3.1 Some of our results and 3.1 cannot contain each other

Theorem 3.1 If 1/p  1/q  1 and K is the positive semidefinite solution of the ARE 1.4, then

1 the trace of matrix K has the lower and upper bounds given by

λ n A 



λ n A 2 n

i1 λ p i R 1/ptrQ

n

i1 λ p i R 1/p

≤ trK ≤ λ1A 



λ1A 2

1/c p,qn2−1/q n

i1 λ p i R 1/ptrQ



1/c p,qn2−1/q n

i1 λ p i R 1/p .

3.2

2 If A  A T /2 ≥ 0, then the trace of matrix K has the lower and upper bounds given by



1/c p,q n1−1/q n

i1 λ p i A 1/p

 

1/c p,qn1−1/q n

i1 λ p i A 1/p 2 n

i1 λ p i R 1/ptrQ n

i1 λ p i R 1/p

≤ trK

n

i1 λ p i A 1/p

 n

i1 λ p i A 2/p 1/c p,qn2−1/q n

i1 λ p i R 1/p trQ



1/c p,qn2−1/q n

i1 λ p i R 1/p .

3.3

Trang 12

3 If A  A T /2 ≤ 0, then the trace of matrix K has the lower and upper bounds given by

− n

i1λ n−i1 Ap 1/p



 n

i1λ n−i1 Ap 2/p

 1/c p,qn2−1/q n

i1 λ p i R 1/p trQ



1/c p,qn2−1/q n

i1 λ p i R 1/p

≤ trK



− 1/c

p,q n1−1/q n

i1λ n−i1 Ap 1/p

n

i1 λ p i R 1/p







1/c p,qn1−1/q n

i1λ i Ap 1/p 2 n

i1 λ p i R 1/ptrQ

n

i1 λ p i R 1/p ,

3.4

where

p

r M q k − m p r m q k

p

Mr mkM k q − m rMkm q k 1/p

q

mrMkM p r − M r mkm p r

 1/q ,

Mr  λ1R, m r  λ n R, M k  λ1K, m k  λ n K,

c p,q M

p

1M q k − m p

1m q k

p

M1mkM q k − m1Mkm q k 1/p

q

m1MkM p1− M1mkm p1 1/q ,

M1 λ1A, m1 λ n A.

3.5

Proof. 1 Take the trace in both sides of the matrix ARE 1.4 to get

tr

A T K

 trKA − trKRK  −trQ. 3.6

Since K is symmetric positive definite matrix, λK  σK, trK  n

i1 σ i K, and from

Lemma 2.9, we have

trK

n1−1/q ≤ tr

K q 1/q

n



i1

σ i KK n

i1

σ i2 K ≤

n

i1

σ i K

2

 trK 2

... Results

Wang et al in 6 have obtained the following: let K be the positive semidefinite solution of< /i>

the ARE1.4 Then the trace of matrix K has the lower and upper bounds given by...

In this section, we obtain the application in the algebraic Riccati equation of our results including3.1 Some of our results and 3.1 cannot contain each other

Theorem...

Trang 12

3 If A  A T /2 ≤ 0, then the trace of matrix K has the lower and upper bounds given

Ngày đăng: 22/06/2014, 02:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm