1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: " Research Article A New Subclass of Analytic Functions Involving Al-Oboudi Differential Operator" docx

10 253 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 488,69 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

¨ Ozlem G ¨uney Department of Mathematics, Faculty of Science and Letters, Dicle University, 21280 Diyarbakir, Turkey Correspondence should be addressed to Sevtap S ¨umer Eker, sevtaps@d

Trang 1

Volume 2008, Article ID 452057, 10 pages

doi:10.1155/2008/452057

Research Article

A New Subclass of Analytic Functions Involving

Al-Oboudi Differential Operator

Sevtap S ¨umer Eker and H ¨ Ozlem G ¨uney

Department of Mathematics, Faculty of Science and Letters, Dicle University, 21280 Diyarbakir, Turkey

Correspondence should be addressed to Sevtap S ¨umer Eker, sevtaps@dicle.edu.tr

Received 25 September 2007; Accepted 4 February 2008

Recommended by Jozsef Szabados

The main object of this paper is to introduce and investigate a new subclass of normalized analytic functions in the open unit disc U which is defined by Al-Oboudi differential operator Coefficient inequalities, extreme points, and integral means inequalities for fractional derivative for this class are given.

Copyright q 2008 S S ¨umer Eker and H ¨Ozlem G ¨uney This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1 Introduction and definitions

LetA denote the class of functions f normalized by

f z  z ∞

j2

which are analytic in the open unit discU {z : |z| < 1}.

For f ∈ A, Al-Oboudi 1 introduced the following operator:

D1f z  1 − δfz  δzfz  D δ f z, δ ≥ 0 1.3

D n f z  D δ



D n−1f z, n ∈ N  1, 2, 3, . 1.4

If f is given by1.1, then from 1.3 and 1.4 we see that

D n f z  z ∞

j2

1  j − 1δ n a j z j , 

When δ 1, we get Sˇalˇagean differential operator 2

Trang 2

Definition 1.1 LetSm,n,δ α denote the subclass of A consisting of functions f which satisfy the

inequality

Re

D m f z

D n f z



for some 0≤ α < 1, m ∈ N, n ∈ N0, and all z∈ U

The object of the present paper is to investigate the coefficient bounds, extreme points, and integral mean inequalities for fractional derivatives of functions belonging to the class

Sm,n,δ α.

2 Coefficient inequalities

Our first theorem gives a sufficient condition for f ∈ A to belong to the class Sm,n,δ α.

Theorem 2.1 Let fz ∈ A satisfy



j2

where

Ψm, n, j, δ, α 1j−1δ m −1α1 j−1δ n  1j−1δ m 1−α1j−1δ n

2.2

for some α 0 ≤ α < 1, m ∈ N, n ∈ N0, δ δ ≥ 0 Then fz ∈ S m,n,δ α.

Proof Suppose that2.1 is true for α0 ≤ α < 1, m ∈ N, n ∈ N0, and δδ ≥ 0 For fz ∈ A, define the function F z by

F z  D m f z

It suffices to show that



F F z − 1 z  1 < 1 z ∈ U. 2.4

We note that



F F z − 1 z  1 D D m m f f z/D z/D n n f f z − α − 1 z − α  1







D D m m f f z − 1  αD z  1 − αD n n f f z z











α−∞j21  j − 1δ m − 1  α1  j − 1δ n

a j z j−1

2 − α ∞j21  j − 1δ m  1 − α1  j − 1δ n

a j z j−1







∞

j21  j − 1δ m − 1  α1  j − 1δ n |a j ||z| j−1

2 − α −∞j21  j − 1δ m  1 − α1  j − 1δ n

|a j ||z| j−1

< α∞

j21  j − 1δ m − 1  α1  j − 1δ n |a j|

2 − α −∞j21  j − 1δ m  1 − α1  j − 1δ n

|a j|.

2.5

Trang 3

The last expression is bounded above by 1 if

α∞

j21  j − 1δ m − 1  α1  j − 1δ n |a j|

≤ 2 − α −∞

j2



1  j − 1δ m  1 − α1  j − 1δ n

which is equivalent to condition2.1 This completes the proof ofTheorem 2.1

Example 2.2 The function f z given by

f z  z ∞

j2

22  γ1 − αj

belongs to the classSm,n,δ α for γ > −2, 0 ≤ α < 1,  j ∈ C, and | j|  1

We now derive the coefficient inequalities for fz belonging to the class Sm,n,δ α.

Theorem 2.3 If fz ∈ S m,n,δ α, then for k ≥ 2,

a k  ≤ β |v

k|

1 βk−1

j2

1  j − 1δ n

v j  β2k−1

j2>j1

k−2



j1 2

1j1− 1δ

1  j2− 1δ n

v j1v j2

 β3k−1

j3>j2

k−2



j2>j1

k−3



j1 2

1j1− 1δ 1j2− 1δ 1j3− 1δ n

v j

1v j2v j3  · · ·

 β k−2 k−1

j2

1  j − 1δ n

v j| ,

2.8

where β  21 − α and v k  1  k − 1δ m − 1  k − 1δ n

Proof Define the function p z by

p z  1

1− α



D m f z

D n f z − α



 1 ∞

j1

Since pz is the Carath´eodory function, we have that

The definition of pz implies that

1

1 − α



D m f z − αD n f z D n f z



1∞

j1

c j z j



Trang 4

D n f z  z ∞

j2

1 j − 1δ n

a j z j 

n∈ N0



we have

D m f z − αD n f z

1  δ m − α1  δ n

1− α a2z2 1  2δ m − α1  2δ n

1− α a3z3 · · ·

 1  k − 1δ m − α1  k − 1δ n

D n f z



1∞

j1

c j z j







z∞

j2

1 j − 1δ n

a j z j





1 c1z  · · ·  c k z k · · ·.

2.13 Therefore,2.11 shows that

z1δ m −α1δ n

1−α a2z212δ m −α12δ n

1−α a3z3· · ·1k−1δ m −α1k−1δ n





z∞

j2

1 j − 1δ n

a j z j





1 c1z  · · ·  c k z k · · ·.

2.14

If we consider the coefficients of zkof the both sides in the above equality, then we find that

1 k − 1δ m − α 1 k − 1δ n

n

a k k−1

j1

1 k − j − 1δ n

a k −j c j

2.15 Therefore,

1  k − 1δ m − 1  k − 1δ n

k−1



j1

1  k − j − 1δ n a k −j c j







1  k − 1δ 1m − α − 1  k − 1δ n



k−1



j1

1  k − j − 1δ na k −jc j

1  k − 1δ 21 − αm − 1  k − 1δ n



k−1



j1

1  k − j − 1δ na k −j,

2.16

Trang 5

since|c j | ≤ 2 j  1, 2, 3  Thus, for β  21 − α and v k  1  k − 1δ m − 1  k − 1δ n, we obtain

|a k | ≤ β |v1

k|

1 1  δ n β

v2  1  2δ n β

v3  1  3δ n β

v4  ···  1  k − 2δ n β

v k−1

 1  δ n 1  2δ n β2

v2v3  1  δ n 1  3δ n β2

v2v4

 1  δ n 1  4δ n β2

v2v5  ···  1  δ n 1  k − 2δ n β2

v2v k−1

 1  2δ n 1  3δ n β2

v3v4  1  2δ n 1  4δ n β2

v3v5  ···

 1  2δ n 1  k − 2δ n β2

v3v k−1  ···

 1  δ n 1  2δ n 1  3δ n β3

v2v3v4  1  δ n 1  3δ n 1  4δ n β3

v2v4v5  ···

 1  δ n 1  k − 3δ n 1  k − 2δ n β3

v2v k−2v k−1  β k−2 k−1

j2

1  j − 1δ n

v j

|v β

k|

1 βk−1

j2

1  j − 1δ n

v j  β2k−1

j2>j1

k−2



j1 2

1  j1− 1δ 1  j2− 1δ  n

v j1v j2

 β3k−1

j3>j2

k−2



j2>j1

k−3



j1 2

1j1−1δ, 1j2−1δ, 1j3−1δ

n

v j

1v j2v j3 · · ·β k−2 k−1

j2

1j−1δ n

v j .

2.17 This completes the proof ofTheorem 2.3

If we take δ  1 in Theorems2.1and2.3, we can get the results due to S ¨umer Eker and Owa3

3 Extreme points

In view ofTheorem 2.1, we now introduce the subclass Sm,n,δ α ⊂ S m,n,δ α, which consists of

function

f z  z ∞

j2

whose Taylor-Maclaurin coefficients satisfy inequality 2.1 Now, let us determine extreme points of the class Sm,n,δ α.

Trang 6

Theorem 3.1 Let f1z  z and

f j z  z  Ψm, n, j, δ, α21 − α z j j  2, 3, , 3.2

where Ψm, n, j, δ, α is given by 2.2.

Then f ∈ Sm,n α if and only if it can be expressed in the form

f z ∞

j1

where η j > 0 and∞

j1η j  1.

Proof Suppose that

f z ∞

j1

η j f j z  z ∞

j2

η j 21 − α

Then



j2

Ψm, n, j, δ, α Ψm, n, j, δ, α21 − α η j  21 − α∞

j2

η j  21 − α1 − η1 < 21 − α, 3.5

which shows that f satisfies condition2.1 and therefore f ∈ Sm,n,δ α.

Conversely, suppose that f ∈ Sm,n,δ α Since

a jΨm, n, j, δ, α21 − α j  2, 3, , 3.6

we may set

η j  Ψm, n, j, δ, α21 − α a j ,

η1 1 −∞

j2

η j

3.7

Then we obtain

f z ∞

j1

which completes the proof ofTheorem 3.1

Corollary 3.2 The extreme points of Sm,n,δ α are the functions f1z  z and

f j z  z  Ψm, n, j, δ, α21 − α z j j  2, 3, , 3.9

where Ψm, n, j, δ, α is given by 2.2.

Trang 7

4 Integral means inequalities for fractional derivative

We will make use of the following definitions of fractional derivatives by Owa4 , and Srivas-tava and Owa5

Definition 4.1 The fractional derivative of order λ is defined, for a function f, by

D λ z f z  Γ1 − λ1 d

dz

z

0

f ξ

where f is an analytic function in a simply connected region of z-plane containing the origin,

and the multiplicity ofz − ξ −λis removed by requiring logz − ξ to be real when z − ξ > 0

Definition 4.2 Under the hypotheses ofDefinition 4.1, the fractional derivative of order p  λ is defined, for a function f, by

D p z λ f z  d p

dz p D z λ f z 0 ≤ λ < 1; p ∈ N0. 4.2

It readily follows from4.1 that

D z λ z k  Γk − λ  1 Γk  1 z k −λ 0 ≤ λ < 1, k ∈ N. 4.3

Further, we need the concept of subordination between analytic functions 6 and a subordi-nation theorem of Littlewood in our investigation

Definition 4.3 For two functions f and g, analytic in U, say that the function f z is subordinate

to g z in U, and write

if there exists a Schwarz function wz, analytic in U with w0  0 and |wz| < 1 such that

In particular, if the function g is univalent inU, the above subordination is equivalent to

In 1925, Littlewood7 proved the following subordination theorem

Lemma 4.4 If fz and gz are analytic in U with fz≺g(z), then for μ>0 and zre iθ 0<r <1,



0

|fz| μ dθ



0

Trang 8

Theorem 4.5 Let fz ∈ Sm,n,δ α and suppose that



j2

j − p p1a jΨm, n, k, δ, αΓk  1 − λ − pΓ2 − p21 − αΓk  1Γ3 − λ − p 4.8

for some j ≥ p, 0 ≤ λ < 1, and j − p p1 denote the Pochhammer symbol defined by j − p p1 

j − pj − p  1 · · · j Also let the function

f k z  z  Ψm, n, k, δ, α21 − α z k k ≥ 2. 4.9

If there exists an analytic function w z given by

wz k−1 Ψm, n, k, δ, αΓk  1 − λ − p21 − αΓk  1 ∞

j2

j − p p1Γj  1 − λ − p Γj − p a j z j−1, k ≥ p,

4.10

then for z  re iθ and 0 < r < 1,



0

D p λ

z f zμ



0

D p λ

z f k zμ

dθ 0 ≤ λ < 1, μ > 0. 4.11

Proof By virtue of the fractional derivative formula4.3 andDefinition 4.2, we find from3.1 that

D p z λ f z  Γ2 − λ − p z1−λ−p

1∞

j2

Γ2 − λ − pΓj  1

Γj  1 − λ − p a j z j−1

Γ2 − λ − p

1∞

j2

Γ2 − λ − pj − p p1Φja j z j−1 ,

4.12

where

Φj  Γj  1 − λ − p Γj − p 0 ≤ λ < 1; j ≥ p. 4.13 SinceΦj is a decreasing function of j, we have

0 < Φj ≤ Φ2  Γ3 − λ − p Γ2 − p 4.14 Similarly, from4.3, 4.9, andDefinition 4.2, we obtain

D p z λ f k z  z1−λ−p

Γ2 − λ − p



1 21 − αΓ2 − λ − pΓk  1

Ψm, n, k, δ, αΓk  1 − λ − p z k−1



Trang 9

For z  re iθ , 0 < r < 1, we must show that



0





1



j2

Γ2 − λ − pj − p p1Φja j z j−1





μ



0



1  Ψm, n, k, δ, αΓk  1 − λ − p21 − αΓ2 − λ − pΓk  1 z k−1

μ dθ μ > 0.

4.16

Thus by applying Littlewood’s subordination theorem, it would be suffice to show that

1∞

j2

Γ2 − λ − pj − p p1Φja j z j−1≺ 1  Ψm, n, k, δ, αΓk  1 − λ − p21 − αΓ2 − λ − pΓk  1 z k−1. 4.17

By setting

1∞

j2

Γ2 − λ − pj − p p1Φja j z j−1 1  21 − αΓ2 − λ − pΓk  1

Ψm, n, k, δ, αΓk  1 − λ − p w z k−1, 4.18

we find that

wz k−1 Ψm, n, k, δ, αΓk  1 − λ − p21 − αΓk  1 ∞

j2

j − p p1Φja j z j−1 4.19

which readily yields w0  0 Further, we prove that the analytic function wz satisfies

|wz| < 1, z ∈ U for 4.10 We know that

|wz| k−1≤





Ψm, n, k, δ, αΓk  1 − λ − p

21 − αΓk  1



j2

j − p p1Φja j z j−1





Ψm, n, k, δ, αΓk  1 − λ − p

21 − αΓk  1



j2

j − p p1Φja j |z| j−1

≤ |z| Ψm, n, k, δ, αΓk  1 − λ − p



j2

j − p p1a j

 |z| Ψm, n, k, δ, αΓk  1 − λ − p21 − αΓk  1 Γ3 − λ − p Γ2 − p ∞

j2

j − p p1a j

≤ |z| < 1

4.20

by means of the hypothesis ofTheorem 4.5

As special case p 0,Theorem 4.5readily yields

Corollary 4.6 Let fz ∈ Sm,n,δ α and suppose that



j2

ja jΨm, n, k, δ, αΓk  1 − λ21 − αΓk  1Γ3 − λ 4.21

Trang 10

for some 0 ≤ λ < 1 Also let the function

f k z  z  Ψm, n, k, δ, α21 − α z k k ≥ 2. 4.22

If there exists an analytic function w z given by

wz k−1 Ψm, n, k, δ, αΓk  1 − λ21 − αΓk  1 ∞

j2

Γj  1

Γj  1 − λ a j z j−1, 4.23

then for z  re iθ and 0 < r < 1,



0

D λ

z f zμ



0

D λ

z f k zμ

dθ 0 ≤ λ < 1, μ > 0. 4.24

Acknowledgment

The authors are thankful to the referees for their comments and suggestions

References

1 F M Al-Oboudi, “On univalent functions defined by a generalized S˘al˘agean operator,” International

Journal of Mathematics and Mathematical Sciences, vol 2004, no 27, pp 1429–1436, 2004.

2 G S S˘al˘agean, “Subclasses of univalent functions,” in Complex Analysis—5th Romanian-Finnish seminar,

Part 1 (Bucharest, 1981), vol 1013 of Lecture Notes in Mathematics, pp 362–372, Springer, Berlin, Germany,

1983.

3 S S ¨umer Eker and S Owa, “New applications of classes of analytic functions involving the S˘al˘agean

operator,” in Proceedings of the International Symposium on Complex Function Theory and Applications, pp.

21–34, Transilvania University of Printing House, Bras¸ov, Romania, September 2006.

4 S Owa, “On the distortion theorems I,” Kyungpook Mathematical Journal, vol 18, no 1, pp 53–59, 1978.

5 H M Srivastava and S Owa, Eds., Univalent Functions, Fractional Calculus, and Their Applications, Ellis

Horwood Series: Mathematics and Its Applications, Ellis Horwood, Chichester, UK, 1989.

6 P L Duren, Univalent Functions, Springer, New York, NY, USA, 1983.

7 J E Littlewood, “On inequalities in the theory of functions,” Proceedings of the London Mathematical

Society, vol 23, no 1, pp 481–519, 1925.

...

Trang 7

4 Integral means inequalities for fractional derivative

We will make use of the following...

j1

c j z j



Trang 4

D...

0

Trang 8

Theorem 4.5 Let fz ∈ Sm,n,δ α and suppose that

Ngày đăng: 21/06/2014, 22:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm