1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: " Research Article Sufficient Univalence Conditions for Analytic Functions" pptx

5 190 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Sufficient univalence conditions for analytic functions
Tác giả Daniel Breaz, Nicoleta Breaz
Người hướng dẫn Narendra Kumar K. Govil
Trường học Hindawi Publishing Corporation
Chuyên ngành Mathematics
Thể loại Research article
Năm xuất bản 2007
Thành phố New York
Định dạng
Số trang 5
Dung lượng 460,53 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Govil We consider a general integral operator and the class of analytic functions.. We extend some univalent conditions of Becker’s type for analytic functions using a general integral t

Trang 1

Volume 2007, Article ID 86493, 5 pages

doi:10.1155/2007/86493

Research Article

Sufficient Univalence Conditions for Analytic Functions

Daniel Breaz and Nicoleta Breaz

Received 30 October 2007; Accepted 4 December 2007

Recommended by Narendra Kumar K Govil

We consider a general integral operator and the class of analytic functions We extend some univalent conditions of Becker’s type for analytic functions using a general integral transform

Copyright © 2007 D Breaz and N Breaz This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

1 Introduction

Letᐁ= { z ∈ C, | z | < 1 }be the unit disk, letᏭ denote the class of the functions f of the

form



f (z) = z + a2z2+a3z3+···,z ∈ᐁ, (1.1) which are analytic in the open disk, and letᐁ satisfy the condition f (0) = f (0)1=0 Consider᏿= { f ∈ Ꮽ : f is univalent functions in ᐁ }

In [1], Pescar needs the following theorem

Theorem 1.1 [1] Let c and β be complex numbers with Re β > 0, | c |≤ 1, and c = − 1, and let h(z) = z + a2z2+··· be a regular function in ᐁ.If



c | z |2β+

1− | z |2βzh (z)

βh (z)



for all the z ∈ ᐁ, then the function

F β(z) =β

z

0t β −1h (t)dt

1

is regular and univalent in ᐁ.

Trang 2

In [2], Ozaki and Nunokawa give the next result.

Theorem 1.2 [2] Let f ∈ Ꮽ satisfy the following condition:



z2f f2((z) z) −1

for all z ∈ ᐁ, then f is univalent in ᐁ.

Lemma 1.3 (The Schwarz lemma) [3,4] Let the analytic function f be regular in the unit disk and let f (0) = 0 If | f (z) |≤ 1, then

for all z ∈ ᐁ, where the equality can hold only if | f (z) | = Kz and K = 1.

In [5], Seenivasagan and Breaz consider, for f i ∈Ꮽ2(i =1, 2, ,n) and α1,α2, ,α n,

β ∈ C, the integral operator

F α1 ,α2 , ,α n,β(z) = β

z

0t β −1

n

i =1

f

i(t) t

1/α i dt

 1

Whenα i = α for all i =1, 2, ,n, F α1 ,α2 , ,α n,β(z) becomes the integral operator F α,β(z)

considered in [6]

2 Main results

Theorem 2.1 Let M ≥ 1 and the functions f i ∈ Ꮽ, for i ∈ {1, ,n } , satisfy the condition ( 1.4 ), and let β be a real number, β ≥n

i =1(2M + 1)/ | α i | and c is a complex number If

| c |≤11

β

n



i =1

2M + 1

α

for all z ∈ ᐁ, then the function F α1 ,α2 , ,α n,β defined in ( 1.6 ) is in the class ᏿.

Proof Define a function

h(z) =

z

0

n

i =1

f

i(t) t

1/αi

then we haveh(0) = h (0)1=0 Also, a simple computation yields

h (z) = n

i =1

f i(z) z

1/α i

zh (z)

h (z) =n

i =1

1

α i

z f i (z)

Trang 3

From (2.5), we have



zh h  ((z) z)≤n

i =1

1

α i z f i (z)

f i(z)



+ 1 =

n



i =1

1

| α i |





z

2f i (z)



f i(z) 2



f i(z) z



+ 1



From the hypothesis, we have| f i(z) |≤ M (z ∈ ᐁ, i =1, 2, ,n), then byLemma 1.3,

we obtain that

| f i(z) |≤ M | z | (z ∈ ᐁ, i =1, 2, ,n). (2.7)

We apply this result in inequality (2.6), and we obtain



zh h  ((z) z)≤n

i =1

1

α i z2f i (z)



f i(z) 2



M + 1

n

i =1

1

α i z2f i (z)



f i(z) 21

M + M + 1

=n

i =1

1

α

i(M + M + 1) =n

i =1

2M + 1

α

i .

(2.8)

We have



c | z |2β+

1− | z |2βzh (z)

βh (z)



 =c | z |2β+

1− | z |2β1

β

n



i =1

1

α i z f i (z)

f i(z) −1 

≤| c |+1

β ·n

i =1

1

α iz

2f i (z)

f i2(z)



·f i(z)

| z | + 1



.

(2.9)

We obtain



c | z |2β+

1− | z |2βzh (z)

βh (z)



≤| c |+1

β

n



i =1

2M + 1

So from (2.1), we have



c | z |2β+

1− | z |2βzh (z)

βh (z)



ApplyingTheorem 1.1, we obtain thatF α1 ,α2 , ,α n,βis univalent 

Theorem 2.2 Let M ≥ 1 and the functions f i ∈ Ꮽ, for i ∈ {1, ,n } satisfy the condition ( 1.4 ), and let β be a real number, β ≥ n(2M + 1)/ | α | and c is a complex number.

If

| c |≤11

β

n(2M + 1)

| α | ,

f i(z) ≤ M

(2.12)

Trang 4

for all z ∈ ᐁ, then the function

F α,β(z) = β

z

0t β −1 n

i =1

f i(t) t

1

dt

 1

(2.13)

is in the class ᏿.

Proof InTheorem 2.1, we considerα1= α2= ··· = α n = α. 

Corollary 2.3 Let the functions f i ∈ Ꮽ, for i ∈ {1, ,n } , satisfy the condition ( 1.4 ), and let β be a real number, β ≥n

i =1(3/ | α i | ) and c is a complex number.

If

| c |≤11

β

n



i =1

3

α i,

f i(z) ≤1

(2.14)

for all z ∈ ᐁ, then the function F α1 ,α2 , ,α n,β defined in ( 1.6 ) is in the class ᏿.

Corollary 2.4 Let M ≥ 1 and the function f ∈ Ꮽ, satisfy the condition ( 1.4 ), and let β be

a real number, β ≥(2M + 1)/ | α | and c is a complex number.

If

| c |≤11

β

2M + 1

| α | ,

f (z) ≤ M

(2.15)

for all z ∈ ᐁ, then the function

G α,β(z) = β

z

0t β −1

f (t) t

1

dt

 1

(2.16)

is in the class ᏿.

Corollary 2.5 Let the function f ∈ Ꮽ satisfy the condition ( 1.4 ), and let β be a real number, β ≥3/ | α | and c is a complex number.

If

| c |≤11

β

3

| α |,

f (z) ≤1

(2.17)

Trang 5

for all z ∈ ᐁ, then the function

G α,β(z) = β

z

0t β −1 f (t)

t

1/α

dt

 1

(2.18)

is in the class ᏿.

Acknowledgment

This resaerch was supported by the Grant of the Romanian Academy no 20/2007

References

[1] V Pescar, “A new generalization of Ahlfors’s and Becker’s criterion of univalence,” Bulletin of the

Malaysian Mathematical Society, vol 19, no 2, pp 53–54, 1996.

[2] S Ozaki and M Nunokawa, “The Schwarzian derivative and univalent functions,” Proceedings

of the American Mathematical Society, vol 33, no 2, pp 392–394, 1972.

[3] Z Nehari, Conformal Mapping, McGraw-Hill, New York, NY, USA, 1952.

[4] Z Nehari, Conformal Mapping, Dover, New York, NY, USA, 1975.

[5] N Seenivasagan and D Breaz, “Certain sufficient conditions for univalence,” to appear in Gen-eral Mathematics.

[6] D Breaz and N Breaz, “The univalent conditions for an integral operator on the calssesS pand

T2,” Journal of Approximation Theory and Applications, vol 1, no 2, pp 93–98, 2005.

Daniel Breaz: Department of Mathematics, “1 Decembrie 1918” University, Alba Iulia, Romania

Email address:dbreaz@uab.ro

Nicoleta Breaz: Department of Mathematics, “1 Decembrie 1918” University, Alba Iulia, Romania

Email address:nbreaz@uab.ro

... ≤ M

(2.12)

Trang 4

for all z ∈ ᐁ, then the function

F... ≤1

(2.17)

Trang 5

for all z ∈ ᐁ, then the function

G... i (z)

Trang 3

From (2.5), we have



zh

Ngày đăng: 21/06/2014, 22:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm