1. Trang chủ
  2. » Tài Chính - Ngân Hàng

Bài giảng giá trị đồng tiền theo thời gian

51 9 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Giá Trị Đồng Tiền Theo Thời Gian
Định dạng
Số trang 51
Dung lượng 883,26 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Giá trị dòng tiền theo thời gian là lý thuyết cơ bản trong lĩnh vực tài chính, cho rằng lượng tiền mà chúng ta nắm giữ trong hiện tại sẽ có giá trị hơn so với lượng tiền tương tự mà ta nắm giữ trong tương lai vì tiền có khả năng sinh lợi. Chính vì thế ai cũng lựa chọn việc nhận tiền vào ngày hôm nay hơn là nhận cùng một số lượng tương tự vào ngày nào đó trong tương lai, nhận tiền sớm chừng nào thì càng có lợi chừng đó.

Trang 1

CHUYÊN ĐỀ: GIÁ TRỊ ĐỒNG TIỀN

THEO THỜI GIAN

Trang 2

-Lãi suất danh nghĩa và LS thực

3 Giá trị thời gian của tiền tệ

- Dòng tiền

- Dòng tiền đều

- Dòng tiền không đều

Trang 3

Gía trị tương lai của tiền tệ

- Gía trị tương lai của một khoản tiền

- Giá trị tương lai của dòng tiền đều

- Giá trị tương lai của dòng tiền không đều.

Gía trị hiện tại

- Giá trị hiện tại của một khoản tiền

- Gía trị hiện tại của một dòng tiền đều

+ Dòng tiền cuối kỳ

+ Dòng tiền đầu kỳ

+ Giá trị hiện tại của dòng tiền đều vĩnh cửu

Trang 5

Vì sao tiền có giá trị theo thời gian

• Giá trị dòng tiền theo thời gian là lý thuyết cơ bản trong lĩnh vực tài chính, cho rằng lượng tiền mà chúng ta nắm giữ trong hiện tại sẽ có giá trị hơn so với lượng tiền tương tự mà ta nắm giữ trong tương lai

vì tiền có khả năng sinh lợi

• Chính vì thế ai cũng lựa chọn việc nhận tiền vào ngày hôm nay hơn là nhận cùng một số lượng tương tự vào ngày nào đó trong tương lai, nhận tiền sớm chừng nào thì càng có lợi chừng đó

Chi phí cơ hội của tiền: Đồng tiền luôn có cơ hội

sinh lời Tiền lãi là chi phí cơ hội bị mất đi

Trang 6

Tính lạm phát: tức là đồng tiền bị giảm giá trị Việc

cất tiền trong nhà là một trong những nguyên nhân lạm phát Tốt nhất nên đầu tư để đồng tiền luân chuyển vừa tăng giá trị vừa thúc đẩy kinh tế phát triền

và đồng tiền càng tăng giá trị

Tính rủi ro: những biến động về Kinh tế-Chính

trị-Xã hội hình thành nên những rủi ro Dĩ nhiên, cất tiền cũng là rủi ro Vậy nên hãy tìm cách đầu tư, rủi ro càng nhiều thì lợi nhuận càng cao

Trang 7

LÃI SUẤT

• Trong mỗi quốc gia, giá trị đồng tiền luôn thay đổi theo những thời kỳ khác nhau.Trong lĩnh vực đầu tư, nhà đầu tư phải bỏ vốn rải rác trong thời gian dài và kết quả đầu tư cũng sẽ thu được trong thời gian dài với khoảng cách thời gian bằng nhau Các khoản vốn đầu tư và lợi nhuận này tạo ra các chuỗi tiền tệ hay còn gọi là kỳ khoản (khoản tiền bỏ ra hoặc thu về theo định kỳ) Giá trị của số tiền bằng nhau ở những thời điểm khác nhau hoàn toàn khác nhau.

• Ví dụ: gửi tiết kiệm ở ngân hàng số tiền 1.000.000đ với lãi suất 10%, sau một năm rút ra sẽ được 1.100.000đ

• Việc nghiên cứu giá trị tiền tệ phải bao gồm hai khía cạnh: số lượng và thời gian.

• Vì vậy, để thẩm định một dự án hay so sánh những dự án với nhau, để định giá giá trị doanh nghiệp hay một loại chứng khoán nào đó cần phải quy giá trị của tiền tệ ở các thời điểm khác nhau về cùng một thời điểm nhất định

• Giá trị tiền tệ được xét ở hai thời điểm: hiện tại và tương lai.

Trang 8

LÃI SUẤT

Lãi suất :

Lãi suất : là số tuyệt đối phản ánh phần chênh lệch vốn

tích luỹ theo thời gian trừ đi vốn đầu tư ban đầu

Tiền lãi = Tổng vốn tích luỹ theo thời gian - Vốn đầu tư ban đầu

Lãi suất: là tiền lãi trong một đơn vị thời gian chia cho vốn đầu

tư ban đầu tính theo phần trăm (%).

Tiền lãi trong một đơn vị thời gian

Lãi suất = * 100%

Vốn đầu tư ban đầu

Trang 9

LÃI SUẤT

• Ví dụ: Đầu tư 100 triệu đồng sau một năm thu được 112 triệu đồng Như vậy sau 1 năm nhà đầu tư lãi là 12 triệu đồng

và lãi suất đạt được là :

12.000.000

= x 100% = 12%

100.000.000

Trang 10

LÃI ĐƠN

• Là tiền lãi được tính trên số vốn gốc đầu tư ban đầu

• Xây dựng công thức tính lãi đơn:

Gọi: + PV: Vốn đầu tư ban đầu.

+ r: Lãi suất.

+ n: Số kỳ đầu tư.

+ I: Tiền lãi đơn thu được sau n kỳ đầu tư.

+ FVt : Số tiền cả gốc và lãi có được ở năm t (t=n,1).

Ta có: + Số tiền cả gốc và lãi có được ở năm t (t=n,1) là:

+ Số tiền sau năm đầu tư thứ 1: FV1 = PV + PV x r = PVx(1+ r)

+ Số tiền sau năm đầu tư thứ 2: FV2 = PV + PVx r + PV x r = PVx(1 + 2r) + Số tiền sau n năm đầu tư : FVn=PV+PVx r+PVx r + = PVx(1+n x r)

Vậy tổng số tiền thu được (cả gốc và lãi) của khoản vốn sau n kỳ đầu tư là:

FVn = PV + I = PV + PVx rx n = PVx (1+ n x r)

Tiền lãi đơn thu được sau n kỳ đầu tư:

I = FVn - PV = PVx (1+ n x r) – PV = PVx r x n

Trang 11

VÍ DỤ

Mua trái phiếu chính phủ (Tính theo lãi đơn): Mệnh giá:

100.000đ, Lãi suất: 10%/ năm, Thời hạn: 5 năm, Trả gốc, lãi

1 lần sau 5 năm Yêu cầu:

Xác định tiền lãi thu được sau 5 năm, tổng số tiền nhận về

cả gốc và lãi sau 3, 5 năm.

Trang 12

LÃI KÉP

Lãi tức kép: là tiền lãi được xác định dựa trên cơ sở là số tiền lãi của các kỳ trước cộng vào vốn gốc làm căn cứ tính lãi của kỳ sau.

Như vậy, ta có thể hiểu rằng khi khoản tiền đầu tư với lãi kép, mỗi lần thanh toán lãi là phần lãi đó lại được tái đầu tư Xây dựng công thức tính lãi kép

Gọi: + PV: Vốn đầu tư ban đầu.

+ r: Lãi suất.

+ n: Số kỳ đầu tư.

+ I: Tiền lãi kép thu được sau n kỳ đầu tư.

+ FVt : Số tiền cả gốc và lãi có được ở năm t (t=n,1)

Trang 13

Ta có: Số tiền cả gốc và lãi có được ở năm t (t=n,1) theo lãi kép là:

+ Sau năm thứ 1 : FV1 = PV + PVx r = PVx (1+ r) 1

+ Sau năm thứ 2 : FV2 = FV1 + FV1 x r = FV1x (1 + r) = PVx (1+ r) 2

+ Sau năm thứ 3 : FV3 = FV2 + FV2 x r = FV2 x(1 + r) = PV x (1+ r) 3 …

+ Sau năm thứ n : FVn = FVn-1 + FVn-1 x r = FVn-1 x (1 + r) = PV x (1+ r) n

Vậy tổng số tiền thu được (cả gốc và lãi) sau n năm đầu tư là:

FVn = PV x (1+ r) n

􀃖 Ta có: Số tiền lãi thu được sau n năm đầu tư theo lãi kép:

I = FVn - PV = PV x (1+ r)n – PV

Trang 14

LÃI KÉP

• Ví dụ: Ông A gửi ngân hàng số tiền 100 triệu đồng với lãi suất 12%/năm Sau 3 năm gửi ông thu được số tiền cả gốc lẫn lãi là: 100trx(1+12%)3 =140, 4928 trđ

Trang 15

VÍ DỤ

• Công ty A gửi vào ngân hàng M khoản tiền 500 triệu, lãi suất: 10%/ năm, Thời hạn: 5 năm, Trả gốc và lãi 1 lần sau 5 năm, tính tiền lãi theo phương pháp lãi kép Yêu cầu:

+ Xác định số tiền (gốc + lãi) có được sau năm đầu tư thứ 1,2,3,4,5.

+ Xác định số tiền lãi thu được sau 5 năm đầu tư theo lãi kép.

Trang 16

LÃI ĐƠN & LÃI KÉP

Lãi đơn: khi lãi được trả trên vốn gốc

Lãi kép: khi lãi được trả cả trên vốn gốc và trên phần lãi sinh thêm từ

vốn gốc trong các khoản thời gian trước đó

Ví dụ: Vốn gốc là PV, lãi suất là i %/ năm

Năm Đầu kỳ Lãi Cuối kỳ Đầu kỳ Lãi Cuối kỳ

1 PV PVi PV (1+i) PV PVi PV (1+i)

2 PV PVi PV (1+ 2i) PV (1+i) PV (1+i) i PV (1+i) 2

3 PV PVi PV (1 + 3i) PV (1+i) 2 PV (1+i) 2 i PV (1+i) 3

n PV PVi PV (1+ ni) PV (1+i) n-1 PV (1+i) n-1 i PV (1+i) n

Kết

n

Trang 17

LÃI SUẤT THỰC VÀ LÃI SUẤT

DANH NGHĨA

• Thông thường người sử dụng vốn chỉ trả lãi sau một thời gian sử dụng Tuy nhiên, trong thực tế có trường hợp lợi tức được trả ngay khi người sử dụng vốn nhận vốn Trong trường hợp này lãi suất được quy định cụ thể trên văn bản (hợp đồng, trái phiếu ) chỉ là lãi suất danh nghĩa Lãi suất thực khi đó lại lớn hơn lãi suất danh nghĩa

Trang 18

• Chu kỳ trả lãi trong năm có ảnh hưởng đến giá trị hiện tại và tương lai của các dòng tiền khi tiền lãi được tính nhập gốc

=> lãi suất thực nhận

Lãi suất danh nghĩa: lãi suất công bố tính theo năm chưa

được điều chỉnh theo tần suất ghép lãi trong năm

• Lãi suất hiệu dụng (effective rate/ lãi suất thực) với t kỳ trả lãi trong năm và tiền lãi được tính nhập gốc :

1+Rnominal

• R real = -1 Công thức lãi suất thực khấu trừ lạm phát

1 + inflation

Mối liên hệ giữa lãi suất kép và giá trị đồng

tiền theo thời gian

Trang 19

• BT: Tỷ suất sinh lời của một danh mục đầu tư như sau:

Loại tài sản Tỷ suất sinh lợi (%)

Trang 20

Chu kỳ thanh

toán lãi danh nghĩa Lãi suất

(%/năm)

Số lần thanh toán

Mối liên hệ giữa lãi suất kép và giá trị đồng

tiền theo thời gian

Trang 21

GIÁ TRỊ TƯƠNG LAI CỦA TIỀN TỆ

A Giá trị tương lai của một số tiền:

Giá trị tương lai của một số tiền đầu tư V0 chính là giá trị Vn thu được sau n kỳ đầu tư với lãi suất là i/kỳ Đây chính là giá trị cuối của một số tiền Giá trị tương lai của tiền tệ có thể tính theo phương pháp lãi đơn hay lãi kép

Cách tính giá trị tương lai như sau: Vn = V0 (1+i)n

Trang 22

GIÁ TRỊ TƯƠNG LAI CỦA MỘT KHOẢN TIỀN

• Giả sử ngày hôm nay hoặc ngay bây giờ chúng ta bỏ một lượng tiền 100USD gửi vào ngân hàng sau 1 năm nữa thì khi đó giá trị tương lai của 100USD sẽ lớn hơn 100USD và con số cụ thể là bao nhiêu thì chúng ta có thể dễ dàng tính toán được qua công thức được xác định ngay sau đây.

Ký hiệu: PV: giá trị của khoản vốn đầu tư ban đầu (Present Value).

FVn: giá trị tương lai của khoản vốn đầu tư ban đầu sau năm thứ n.

r: là lãi suất kép (%/năm)

n: số kỳ đầu tư (năm)

FVt: giá trị tương lai của khoản vốn đầu tư sau t năm đầu tư (t=n,1).

Trang 23

Khái niệm dòng tiền

Dòng tiền hay còn gọi là ngân lưu là một chuỗi các khoản thu nhập hoặc chi trả xảy ra qua một số thời

kỳ nhất định

• Ví dụ:

Tiền thuê nhà hàng tháng phải trả 2 triệu đồng trong thời hạn một năm chính là một dòng tiền bao gồm 12 khoản chi trả hàng tháng

Hoặc giả một người mua cổ phiếu công ty và hàng năm được chia cổ tức, thu nhập cổ tức hàng năm hình thành một dòng tiền bao gồm các khoản thu nhập cổ tức qua các năm kể từ năm mua cổ phiếu

Trang 24

Dòng tiền bao gồm các khoản chi trả thường gọi là dòng tiền ra (outflows) Dòng tiền bao gồm các khoản thu nhập thường gọi là dòng tiền vào (inflows) Hiệu số giữa dòng tiền vào và dòng tiền ra thường gọi là dòng tiền ròng (net cash flows) Lưu ý, một dòng tiền nói chung có thể bao gồm toàn bộ các khoản tiền vào, hoặc toàn bộ các khoản tiền ra, hoặc cả hai

Trang 25

Các dạng dòng tiền:

- PV: Present Value (Giá trị hiện tại của dòng tiền)

- FV: Future Value (Giá trị tương lai của dòng tiền)

• Dòng tiền đơn

• Dòng tiền đều

• Dòng tiền đều vô hạn

• Dòng tiền có tăng trưởng

Trang 26

Dòng tiền đều là dòng tiền có các khoản tiền thu vào

hoặc chi ra đều nhau và xuất hiện ở cuối các thời điểm trong các kỳ của thời gian đầu tư

Trong rất nhiều ứng dụng thực tiễn, chúng ta cần xác định hiện giá của một chuỗi tiền tệ đều phát sinh trong tương lai Hầu như chúng ta luôn luôn có nhu cầu phải biết được hiện giá của một chuỗi tiền tệ đều nhau xuất hiện ở các thời điểm trong tương lai là bao nhiêu?

Trang 27

Dòng tiền không đều (Uneven or mixed cash flows)

– là dòng tiền bao gồm các khoản không bằng nhau xảy ra qua một số thời kỳ nhất định Dòng tiền không đều thường phổ biến trên thực tế Hầu hết doanh thu, chi phí và lợi nhuận của một doanh nghiệp đều có dạng dòng tiền không đều

Trang 28

Dòng tiền đều qua các năm (annuity)

Giá trị tương lai của 1 dòng tiền đều:

Ví dụ: Hàng tháng trích lương 300.000 đồng chuyển vào tài

khoản tiết kiệm với lãi suất 0,65%/tháng Sau 1 năm, tài khoản

đó sẽ có bao nhiêu tiền nếu:

a Ngày nhận lương là ngày cuối tháng

b Ngày nhận lương là ngày đầu tháng

1C

r1

Cr

n,FVA

n n

t

1 t

t

Trang 29

Dòng tiền đều qua các năm (annuity)

Giá trị hiện tại của 1 dòng tiền đều:

1

1 -

1 r

C r

1

1 C

r n, PVA

Trang 30

Dòng tiền đều vô hạn (Perpetuity)

Dòng tiền đều vô hạn = dòng tiền đều kéo dài mãi mãi

Giá trị hiện tại của dòng tiền đều vô hạn được tính như đối với dòng tiền đều với n=

Khi đó ta có: PV = C/r

Ví dụ: Tính giá trái phiếu CP mệnh giá 100.000 đ, lãi suất

coupon trả định kỳ hàng năm là 10%, thời gian đáo hạn là

100 năm Ls thị trường hiện là 8%/năm

t=0 t=1 t=2

C

t=∞

Trang 31

Dòng tiền đều có tăng trưởng

Nếu dòng tiền tăng trưởng g, lãi suất chiết khấu r (0<g<r)

CPV

r1

g

11

gr

Cg

,r,nPVA

Trang 32

Bài tập

• Một doanh nghiệp có nghĩa vụ phải thanh toán một khoản tiền 101.304.000 đồng vào thời điểm sau 5 năm Doanh nghiệp muốn lập một quỹ trả nợ bằng cách hàng năm gửi đều đặn số tiền vào ngân hàng với lãi suất tiền gửi 8%/năm (theo phương pháp tính lãi kép) Vậy doanh nghiệp phải gửi vào ngân hàng mỗi năm bao nhiêu tiền để cuối năm thứ 5 có đủ tiền trả nợ?

Giả sử số tiền gửi đều đặn hàng năm bằng A, trong 5 năm (bắt đầu từ thời điểm ngày hôm nay)

Trang 34

- Nhà cung cấp Y: Chào hàng giá CIF cảng Sài Gòn 100 triệu đồng Thanh toán trong 4 năm mỗi năm thanh toán 25%, lần thanh toán đầu tiên là một năm sau khi giao hàng.

- Nhà cung cấp Z: Chào hàng giá CIF cảng Sài Gòn 100 triệu đồng Thanh toán đều trong 5 năm mỗi năm thanh toán 20%, thanh toán lần đầu tiên là ngay khi giao hàng.

Hệ thống cung cấp thiết bị của ba nhà cung cấp X,Y và Z hoàn toàn giống nhau.

Hãy giúp công ty lựa chọn đơn chào hàng nào có lợi nhất Biết rằng lãi suất ngân hàng là 20%.

Trang 35

• Thực chất mỗi đơn đặt hàng là một chuỗi tiền tệ trong tương lai

Vì vậy muốn so sánh các đơn chào hàng trên phải quy về hiện giá.

-Nếu trả tiền ngay, công ty sẽ trả cho nhà cung cấp X số tiền:

Trang 36

Năm 1 2 3 4 5

KH 24 24 24 24 24

Trang 37

Ứng dụng

Còn khấu hao gia tốc theo phương pháp tổng số thì số tiền khấu hao hàng năm là:

Năm 1 2 3 4 5 Như thế số thuế TNDN phải nộp

thấp hơn so với tính Kh theo PP

KH 40 32 24 16 8 tuyến tính cố định Do đó, nếu tính theo thời giá tiền tệ thì DN đã tiết kiệm được một khoản tiền.

4 Trong các hoạt động khác của lĩnh vực quản trị tài

chính như xác định chính xác chi phí (giá) sử dụng vốn của doanh nghiệp, định giá chứng khoán, định giá doanh nghiệp…(xem chương giá sử dụng vốn; định giá doanh nghiệp)

Trang 38

Ứng dụng

5 Tính lãi suất ngầm:

BT1: Doanh nghiệp A hợp đồng mua của công ty B một

hệ thống thiết bị sản xuất Theo hợp đồng doanh nghiệp

A sẽ trả tiền dần dần như sau:

- Ngay khi nhận hàng trả số tiền : 1.647.844.902 đồng

- Số còn lại trả dần đều trong 5 năm, mỗi năm trả 1.000.000.000 đồng, lần trả đầu tiên trong đợt này là một năm sau khi giao hàng

Yêu cầu: Hãy tính lãi suất ngầm mà doanh nghiệp A phải chịu, biết rằng nếu trả tiền 1 lần duy nhất ngay khi nhận hàng thì chỉ phải trả 5.000.000.000 đồng?

Trang 39

Số tiền thanh toán của doanh nghiệp A khi mua chịu

thực sự tạo thành chuỗi tiền tệ có dạng sau:

Năm 0 1 2 3 4 5

Tiền trả 1.647.844.902 1 tỷ 1 tỷ 1 tỷ 1 tỷ 1 tỷ

Nếu gọi i là lãi suất ngầm, ta có:

Chuỗi tiền tệ trên thỏa mãn công thức:

1 – (1+i) -5

5.000.000.000 = 1.647.844.902 + 1.000.000.000 x

i

1- (1+i) -5 5.000.000.000 – 1.647.844.902

=> = = 3,352155098

I 1.000.000.000

Ta có i = 13% Vậy lãi suất ngầm của khoản mua chịu là 13%.

Trang 42

• Biết rằng lãi suất tiền vay ngân hàng là 12%/năm.

Trang 44

BT:

Công ty xuất nhập khẩu tình Q muốn nhập một hệ thống thiết bị

A của Nhật Công ty đã quyết định mua hàng của nhà cung cấp

X Điều kiện nhà cung cấp X đưa ra như sau:

Nhà cung cấp X chào hàng giá CIF cảng Sài Gòn 100 triệu đồng Phương thức thanh toán là : một năm sau khi giao hàng thanh toán 20%, hai năm sau khi giao hàng trả 30%, ba năm sau khi giao hàng trả 50%.

Tuy nhiên, để ổn định nguồn chi công ty đề nghị với nhà cung cấp X sẽ thanh toán làm ba lần đều nhau trong 3 năm, lần đầu tiền thanh toán là 1 năm sau ngày giao hàng Hãy tính số tiền thanh toán hàng năm ? Biết rằng hai bên thỏa thuận lãi suất là 10%/năm.

Trang 45

Vì vậy muốn thanh toán đều mỗi năm công ty sẽ trả số tiền:

i 10%

V0 = PV = 80,540947 tr x = 32,386707 trđ 1-(1+i) -n 1-1(1+10%) -3

Trang 46

Ứng dụng định giá cổ phiếu

Định giá cổ phiếu bằng chiết khấu dòng cổ tức

Đối với các nhà đầu tư giá trị, khi họ đầu tư mua cổ phiếu, họ sẽ kì vọng nhận được hai loại dòng tiền…:

dòng tiền cổ tức nhận được trong thời gian nắm giữ và dòng tiền nhận được khi bán cổ phiếu Nhưng giá bán của cổ phiếu lại phụ thuộc vào dòng cổ tức mà cổ phiếu

đó đem lại trong tương lai

Phương pháp chiết khấu có 2 mô hình chính gồm:

• Mô hình cổ tức một giai đoạn

• Mô hình cổ tức trong nhiều giai đoạn

Ngày đăng: 17/12/2023, 00:58

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w